
Training Reinforcement Learning
agents for the computing contin-
uum: the FIGARO framework

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria In-
formatica

Author: Benedetta Presicci

Student ID: 989783
Advisor: Prof. Danilo Ardagna
Co-advisors: Federica Filippini, Riccardo Cavadini
Academic Year: 2022-23

i

Abstract
Emerging Artificial Intelligence applications leverage all of the available computing tiers,
operating seamlessly across Edge and Cloud platforms. Deploying applications at the
network’s periphery enables faster processing times, while cloud computing allows for
increased scalability. Dealing with such a dynamic, modular, and diverse environment
requires managing resources to ensure satisfaction of Quality of Service constraints and
the minimization of costs. A novel framework based on Reinforcement Learning was pro-
posed to handle the variability in a runtime computing continuum scenario: FIGARO
(reinForcement learnInG mAnagement acRoss computing cOntinuum). An initial o!ine
training period has been developed to reduce the training time where the agent learns from
the insights provided by a design-time tool. However, the first version of FIGARO was
limited to applications including up to two components. This work tackles this problem
by generalizing the state space definition and streamlining the preliminary o!ine training.

Keywords: Artificial Intelligence, Reinforcement Learning, computing continuum, Op-
timal allocation

Abstract in lingua italiana
Le emergenti applicazioni di Intelligenza Artificiale sfruttano tutti i tier di calcolo disponi-
bili, operando in modo fluido tra piattaforme Edge e Cloud. La distribuzione delle ap-
plicazioni ai margini della rete consente tempi di elaborazione più rapidi, mentre il cloud
computing permette una maggiore scalabilità. Organizzare un sistema così dinamico,
modulare e diversificato richiede una gestione delle risorse che garantisca la soddisfazione
dei vincoli di Qualità del Servizio e la minimizzazione dei costi. È stato proposto un nuovo
framework basato sull’Apprendimento per Rinforzo per gestire le variazioni in uno scenario
di computing continuum in tempo reale: FIGARO (reinForcement learnInG mAnagement
acRoss computing cOntinuum). È stato sviluppato un periodo iniziale di addestramento
o!ine per ridurre il tempo di addestramento, durante il quale l’agente apprende dalle
informazioni fornite da uno strumento di progettazione. Tuttavia, la prima versione di
FIGARO era limitata alle applicazioni che includono fino a due componenti. Questo la-
voro di tesi a"ronta il problema generalizzando la definizione dello spazio degli stati e
semplificando l’addestramento o!ine preliminare.

Parole chiave: Intelligenza Artificiale, Apprendimento per Rinforzo, computing con-
tinuum, Allocazione Ottima

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1

2 State of the art 7
2.1 SPACE4AI-D . 7
2.2 SPACE4AI-R . 9
2.3 Other related works . 11

3 Reinforcement Learning 19
3.1 The agent and the environment . 19
3.2 Policies and value functions . 20
3.3 Optimal policies . 22
3.4 The exploration-exploitation dilemma . 23
3.5 Overview of Reinforcement Learning methods 24

3.5.1 Deep Q-learning . 24

4 FIGARO: reinForcement learnInG mAnagement acRoss the computing
cOntinuum 27
4.1 FIGARO architecture . 27
4.2 Reinforcement Learning problem . 30

4.2.1 State space and action space . 30
4.2.2 Cost function . 31

4.3 The hyperparameters . 33

5 FIGARO v2.0 37

5.1 New state space definition . 38
5.2 New cost function . 41
5.3 New computation of the reward . 42

5.3.1 The new formula . 43
5.3.2 When the reward is computed . 43

5.4 Pre-fill the replay bu"er and pre-train the agent 44

6 Experimental results 47
6.1 The exogenous workload . 47
6.2 The system . 49
6.3 The hyperparameters . 50
6.4 Results . 53

7 Conclusions and future developments 71

Bibliography 75

List of Figures 79

List of Tables 81

1

1| Introduction

Machines created by humans can already handle various labor-intensive tasks. However,
since humans are driven by the desire for better productivity, they have been attempting
to give machines human-like intelligence, which is the main goal of Artificial Intelligence
(AI). AI research, spanning over 65 years, has achieved remarkable advancements in the-
ory and practical applications ([1], [2]).
There are many definitions of Artificial Intelligence. Marvin Minky, one of the pioneers of
AI, defined it as enabling machines to do things that require human intelligence. Although
the descriptions of AI are various, its core is widely believed to be the research theories,
methods, technologies, and applications for simulating, extending, and expanding human
intelligence [3]. Nowadays, the concept of AI has an increasingly profound impact on
human life.
The research fields of AI include systems and engineering, brain science, healthcare, com-
puter science, and many other disciplines, such as natural language processing. For ex-
ample, an AI product used today by 20 million people is Grammarly. Grammarly [4] is a
writing assistant that checks for spelling, grammar, punctuation errors, and it enhances
vocabulary usage. It is a sophisticated AI system that has been improved over the years,
built by linguists and engineers who developed algorithms to detect patterns of good
writing. The Grammarly AI system reviews every sentence and searches for appropriate
replacements for errors when any are found. It operates on a freemium model, where
paid tiers give users more tools beyond grammar checks, such as plagiarism checks. Brad
Hoover, the company’s CEO, confirmed in 2019 to TechCrunch [5] that the company was
valued at more than $1 billion. AI is a smarter way for di"erent industries to work more
e#ciently than traditional methods. It reduces costs and helps distribute the work uni-
formly while completing it faster. It is projected to experience significant growth in the
next decade, as its market share is expected to show an annual growth rate (CAGR 2024-
2030) of 15.83%, resulting in a market volume of $738.80 billion by 2030 [6]. The changes
in the methodology of various sectors toward automation to increase the productivity of
organizations and the rise in demand for artificial intelligence and machine learning-based
solutions are responsible for market growth [7].

2 1| Introduction

AI and cloud computing converge in automating processes, in fact Grammarly itself is
a cloud-based program. With cloud computing, individuals and organizations can gain
on-demand network access to a shared pool of managed and scalable IT resources, such
as servers, storage, and applications [8]. The data is stored on physical servers, which
are maintained by a cloud service provider. Its primary benefits include nearly limitless
storage, quick deployment, easy access to information, and simplified scaling of services
[9]. For example, Grammarly data is stored on servers hosted by Amazon Web Services
in the US and ensures continual product availability by using native backup tools [10].
Moreover, all components that process users data operate in Grammarly’s private net-
work inside a secure cloud platform, and each Grammarly user’s data is isolated from
other users’ data. According to a Deloitte study [11], 70% of companies obtain their AI
capabilities from cloud-based software, while 65% develop AI applications using cloud
services.
However, the advent of the Internet of Things (IoT) era enables millions of interconnected
devices to gather vast amounts of data processed in the cloud for various purposes [12].
IDC [13] predicted up to 60 billion connected entities by 2025, generating about 80 ZB
of raw data. This data overload exposes the drawbacks of the cloud approach: network
saturation, unsustainable large data centers in terms of size and energy consumption, un-
reliable internet connections, and latency, making it unsuitable for real-time or emergency
use cases. In this context, new post-cloud trends aim to move some processing closer to
the data, taking advantage of the improved abilities of edge devices. Edge computing is
a paradigm that performs computing at the edge of the network, meaning closer to the
source of the data, near the end devices [14]. Thanks to this approach, edge computing
is characterized by low latency, processing power closer to the user and real-time interac-
tions, overcoming cloud computing limitations. Nonetheless, edge resources usually have
less computing capacity than the cloud and can become a bottleneck in the computation.

The most promising paradigm is called computing continuum [15], where distributed appli-
cations can seamlessly run on any device from the edge to the cloud, creating a distributed
computing system that is able to fulfill highly heterogeneous applications requirements.
The computing continuum performs computations by distributing the workload across
multiple devices in the system. Each device handles a part of the computation, and the
results are merged to generate the final output. This resource allocation is based on
factors like resource proximity, computational capability, and prioritizing time-sensitive
tasks. Real-time responses might be sent to edge devices, while complex analytics are
usually done in the cloud, depending on the task. This dynamic distribution of tasks
enhances system performance and processing e#ciency while reducing latency.

1| Introduction 3

As an example of computing continuum, consider one of the ELASTIC use cases: the
edge/fog-enabled "Remote Sensing/Advanced Driver Assistance Systems (ADAS) from
infrastructure" application for the city of Florence [16]. This use case considers a dis-
tributed infrastructure of smart cameras and computing and communication networks
placed along the tramway track. The objective is to be able to detect vehicle accidents
beyond the capacity of the tramway sensors/radars and to prevent accidents in case of
no visibility due to urban objects occulting vehicles or pedestrians. The Figure 1.1 below
shows a schematic view of the compute continuum considered in the ELASTIC use case.

Figure 1.1: Elastic computing continuum [17].

Data sources (i.e. cameras, sensors on the tram, etc.) collect data to be sent for real-time
computations. In fact, computer and data nodes can also be found in trains and stations
(Batoni, Arcipressi and Resistenza) [18]. Enabled by the Edge Computing as a Service
provided by Nuvla, the applications based on real-time values typically will be executed
in the edge, e.g., object detection in the tramway and sending proximity alerts to the
tramway cockpit ([19], [16]). In contrast, the o!ine analysis based on edge’s historical
values will run in the cloud, where the heaviest part of processing and storage can be
completed ([19], [18]). A conclusion from the o!ine study could be the readjustment of
tra#c lights because of the detection of several people crossing the tramway at a particular
time. In summary, the intention is to provide access to all the distributed data regardless
of its source and function, without interfering between the di"erent applications/tasks.

The design and management methodologies of these systems pose a significant challenge.
The traditional methods work with client server systems, whose architecture is defined
ad-hoc to solve a precise problem. While these methods remain e"ective for the cloud
paradigm, they are inadequate for the computing continuum, where a diverse range of

4 1| Introduction

architectures coexist within the same system. This challenge, typical of computing con-
tinuum systems and known as the Resource Selection and Application Components Place-

ment (RS-CP) problem, is key in this work. It is usually faced at design time, however, in
real-world scenarios, the expected workload and the service time distribution frequently
change. Therefore, the initially planned placement may become unfeasible or excessively
large depending on the workload. Hence, the authors of [20] proposed FIGARO (re-
inForcement learnInG mAnagement acRoss computing cOntinua), a runtime framework
based on Reinforcement Learning (RL) that automatically learns to solve the RS-CP
problem under varying system conditions at runtime.
The FIGARO environment embeds:

• A Simulator to compute the response times mimicking the actual response times of
a cloud system [21];

• A design-time tool, SPACE4AI-D [22]. It is used to compute the response times
and to represent the analytical counterpart of the Simulator, allowing a comparison.
Moreover, it can also behave as the agent deployed inside the environment;

• A RL-based agent, that exploits both an initial share of knowledge and every in-
formation acquired at runtime. In particular, SPACE4AI-D is the provider of the
initial knowledge. First, the FIGARO agent is trained o!ine to learn a policy that
mimics the behavior of SPACE4AI-D. Then it is deployed at runtime.

The authors of [20] tested, validated and demonstrated that FIGARO outperforms an
agent with random initial policy and a static agent adapted from the design time with an
application pipeline including up to two components.

The key feature of this tool is the o!ine training. If the online training were to start with
a random policy, the learning process would take an extremely long time and would not
converge toward any meaningful solution. The policy obtained through o!ine training is
trained using simulations of workload variations and mimics the behavior of the design-
time tool. This initial policy enables significant online training to take place. Given its
crucial role, it has become fundamental to enhance its e#ciency.
Many di"erent experiments are needed to advance in FIGARO development, as it is in
its early stages. However, currently running o!ine training tests in simple scenarios is a
computer-intensive and lengthy process. Moreover, due to the current definition of the
state space, the policy fails to converge when the application pipeline is slightly more
complex.
This work aims to contribute to the development of FIGARO, more specifically to ease
the process of finding the optimal initial policy with o!ine training. This translates into

1| Introduction 5

changes to the implementation that further encourage the agent to mimic SPACE4AI-
R’s behavior. Furthermore, the state space definition is changed to allow tackling the
management of complex systems.

This work of thesis is organized as follows. Section 2 presents the state of the art. Section
3 introduces key concepts of Reinforcement Learning. Section 4 describes the framework
at the basis of this thesis. Section 5 illustrates the contributions to FIGARO. Section 6
reports the experimental results. In Section 7 the conclusions of this work are discussed.

75

Bibliography
[1] Okyay Kaynak. The golden age of Artificial Intelligence. Discover Artificial Intelli-

gence, 1(1), September 2021.

[2] J McCarthy, M L Minsky, N Rochester, I B M Corporation, and C E Shannon.
A PROPOSAL FOR THE DARTMOUTH SUMMER RESEARCH PROJECT ON
ARTIFICIAL INTELLIGENCE.

[3] Yuchen Jiang, Xiang Li, Hao Luo, Shen Yin, and Okyay Kaynak. Quo vadis artificial
intelligence? Discover Artificial Intelligence, 2(1):4, March 2022.

[4] About Us | Grammarly.

[5] Ingrid Lunden. Grammarly raises $90M at over $1B+ valuation for its AI-based
grammar and writing tools, October 2019.

[6] Artificial Intelligence - Global | Statista Market Forecast.

[7] Allied Market Research https://www.alliedmarketresearch.com. Artificial Intelli-
gence Platform Market Size, Share | Forecast - 2030.

[8] Ali Sunyaev. Cloud Computing. In Internet Computing: Principles of Distributed

Systems and Emerging Internet-Based Technologies, pages 195–236. Springer Inter-
national Publishing, Cham, 2020.

[9] Diana Andreea Popescu, Noa Zilberman, and Andrew W Moore. Characterizing the
impact of network latency on cloud-based applications’ performance.

[10] Security at Grammarly.

[11] AI-fueled organizations.

[12] G. Massari, M. Zanella, and W. Fornaciari. Towards distributed mobile computing.
In 2016 Mobile System Technologies Workshop (MST), pages 29–35, 2016.

[13] IoT.Business.News. IoT Growth Demands Rethink of Long-Term Storage Strategies,
says IDC, July 2020.

76 | Bibliography

[14] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview on edge com-
puting research. IEEE Access, 8:85714–85728, 2020.

[15] Schahram Dustdar, Victor Casamayor Pujol, and Praveen Kumar Donta. On dis-
tributed computing continuum systems. IEEE Transactions on Knowledge and Data

Engineering, 35(4):4092–4105, 2023.

[16] Towards an industrial computing continuum | ELASTIC.

[17] Software Infrastructure | ELASTIC.

[18] Adrián Orive, Aitor Agirre, Hong-Linh Truong, Isabel Sarachaga, and Marga Marcos.
Quality of Service Aware Orchestration for Cloud–Edge Continuum Applica-
tions. Sensors, 22(5), 2022.

[19] Rita Sousa, Luis Nogueira, Fátima Rodrigues, and Luis Miguel Pinho. Global re-
source management in the elastic architecture. In 2022 IEEE 5th International Con-

ference on Industrial Cyber-Physical Systems (ICPS), pages 01–06, 2022.

[20] Federica Filippini, Riccardo Cavadini, Danilo Ardagna, Riccardo Lancellotti,
Gabriele Russo Russo, Valeria Cardellini, and Andrea Lo Presti. FIGARO: reinForce-
ment learnInG mAnagement acRoss computing cOntinua. In 3rd Workshop on Dis-

tributed Machine Learning for the Intelligence Computing Continuum at ACM/IEEE

UCC 2023 (to appear), 2023.

[21] OMNeT++ Discrete Event Simulator.

[22] Hamta Sedghani, Federica Filippini, and Danilo Ardagna. A random greedy based
design time tool for ai applications component placement and resource selection in
computing continua. In 2021 IEEE International Conference on Edge Computing

(EDGE), pages 32–40, 2021.

[23] Baudouin Herlicq, Abderaouf Khichane, and Ilhem Fajjari. Nextgenemo: an e#cient
provisioning of edge-native applications. pages 1924–1929, 05 2022.

[24] T. Bahreini and D. Grosu. E#cient algorithms for multi-component application
placement in mobile edge computing. IEEE Transactions on Cloud Computing,
10(04):2550–2563, oct 2022.

[25] Federica Filippini, Hamta Sedghani, and Danilo Ardagna. SPACE4AI-R: Runtime
Management Tool for AI Applications Component Placement and Resource Selection
in Computing Continua. In 3rd Workshop on Distributed Machine Learning for the

Intelligence Computing Continuum at ACM/IEEE UCC 2023 (to appear), 2023.

| Bibliography 77

[26] Thiago Pereira da Silva, Aluizio Rocha Neto, Thais Vasconcelos Batista, Flávia C.
Delicato, Paulo F. Pires, and Frederico Lopes. Online machine learning for auto-
scaling in the edge computing. Pervasive and Mobile Computing, 87:101722, Decem-
ber 2022.

[27] Yeting Guo, Fang Liu, Nong Xiao, Zhaogeng Li, Zhiping Cai, Guoming Tang, and
Ning Liu. Para: Performability-aware resource allocation on the edges for cloud-
native services. International Journal of Intelligent Systems, 37, 07 2022.

[28] Xun Shao, Go Hasegawa, Mianxiong Dong, Zhi Liu, Hiroshi Masui, and Yusheng
Ji. An online orchestration mechanism for general-purpose edge computing. IEEE

Transactions on Services Computing, 16(2):927–940, 2023.

[29] Michael Neely. Stochastic Network Optimization with Application to Communication

and Queueing Systems, volume 3. 01 2010.

[30] Qianlin Liang, Walid A. Hanafy, Ahmed Ali-Eldin, and Prashant Shenoy. Model-
driven cluster resource management for ai workloads in edge clouds. ACM Trans.

Auton. Adapt. Syst., 18(1), mar 2023.

[31] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and Asser
Tantawi. An analytical model for multi-tier internet services and its applications.
SIGMETRICS Perform. Eval. Rev., 33(1):291–302, jun 2005.

[32] Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for
the multiple knapsack problem. SIAM Journal on Computing, 35(3):713–728, 2005.

[33] Ida Nurcahyani and Jeong Woo Lee. Role of machine learning in resource allocation
strategy over vehicular networks: A survey. Sensors, 21(19), 2021.

[34] Hao Ye, Geo"rey Ye Li, and Biing-Hwang Fred Juang. Deep reinforcement learning
based resource allocation for v2v communications. IEEE Transactions on Vehicular

Technology, 68(4):3163–3173, April 2019.

[35] Zhengwei Lyu, Ying Wang, Man Liu, and Yuanbin Chen. Service-driven resource
management in vehicular networks based on deep reinforcement learning. In 2020

IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio

Communications, pages 1–6, 2020.

[36] Shuiguang Deng, Zhengzhe Xiang, Peng Zhao, Javid Taheri, Honghao Gao, Jianwei
Yin, and Albert Y. Zomaya. Dynamical resource allocation in edge for trustable
internet-of-things systems: A reinforcement learning method. IEEE Transactions on

Industrial Informatics, 16(9):6103–6113, Sep. 2020.

78 7| BIBLIOGRAPHY

[37] Sihua Wang, Mingzhe Chen, Xuanlin Liu, Changchuan Yin, Shuguang Cui, and
H. Vincent Poor. A machine learning approach for task and resource allocation in
mobile-edge computing-based networks. IEEE Internet of Things Journal, 8(3):1358–
1372, Feb 2021.

[38] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.

[39] Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian Q-Learning.

[40] Alessandro Lazaric. Transfer in Reinforcement Learning: A Framework and a Survey.
In Marco Wiering and Martijn van Otterlo, editors, Reinforcement Learning: State-

of-the-Art. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[41] Paulo Rauber, Avinash Ummadisingu, Filipe Mutz, and Jürgen Schmidhuber. Rein-
forcement Learning in Sparse-Reward Environments With Hindsight Policy Gradi-
ents. Neural Computation, 33(6), May 2021.

[42] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Os-
trovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, February
2015.

[43] Replay Bu"ers | TensorFlow Agents.

[44] Edward D Lazowska, John Zahorjan, G Scott Graham, and Kenneth C Sevcik. Quan-

titative system performance: computer system analysis using queueing network mod-

els. Prentice-Hall, Inc., 1984.

[45] Fabio Lavezzo Andrea De Bettin. Figaro: reinforcement learning management across
computing continua, 2022.

[46] Hyperopt Documentation.

79

List of Figures

1.1 Elastic computing continuum [17]. 3

2.1 Directed Acyclic Graph for components. 8
2.2 Example of AI application component with its candidate deployments. . . 10

3.1 The agent-environment interaction in a Markov decision process. 19

4.1 FIGARO architecture [20]. The workload trace generator simulates the ex-
ogenous workload, the coordinators manage communications between com-
ponents, the agent chooses the actions in each state to interact with the
environment, emulated by the simulator. 28

4.2 Examples . 32

5.1 Figurative representation of the proposed layered architecture with a "mas-
ter" agent that manages the agents trained in parallel to allow tackling
complex cases. The individual agents are unaware of each other and they
make independent decisions related to their assigned sub-system. Each
sub-system includes one computational layer with one VM and the compo-
nents allocated to its layer. The "master" agent receives their actions and
checks if the global constraints are met. Then it provides feedback to the
agents. ω is the exogenous workload that enters in the system and flows
through the DAG. 39

5.2 Examples . 42

6.1 The workload trace used to evaluate tests. On the x axis the reconfigura-
tions steps, on the y axis the requests per seconds. 48

6.2 Results . 54
6.3 Results . 55
6.4 Results . 56
6.5 Results . 57
6.6 Results . 58

80 | List of Figures

6.7 Example of intermediate policy evaluation steps in which the policy would
not adapt to the exogenous workload with s(ε) = < N,ω, p, q, U >, pre-
filled replay bu"er, pre-trained agent and decaying reward. On the x axis
the reconfiguration steps, on the y axis the number of VM instances. . . . 60

6.8 Results . 64
6.9 Results . 65
6.10 Results . 66
6.11 Results . 67
6.12 Results . 68
6.13 Results . 69

81

List of Tables

4.1 Environment parameters. 34
4.2 Network parameters. 34
4.3 Agent parameters. 35
4.4 Training parameters. 35

6.1 The parameters used to generate the workload curve used for evaluation of
the policy. 48

6.2 Components. 49
6.3 CloudResources. 49
6.4 Performance. QTcloud is a performance model that exploits M/G/1 theory

and considers partitions executed on a group of virtual machines. 49
6.5 CompatibilityMatrix. 49
6.6 NetworkTechnology. 50
6.7 LocalConstraints. 50
6.8 DirectedAcyclicGraph. 50
6.9 Possible values for the hyperparameters tuned with Hyperopt. 51
6.10 Values of the hyperparameters found by Hyperopt, used in the experiments

with both versions of FIGARO. 52
6.11 Values of the learning rate.. 52
6.12 Summary metrics. The implementation "New, no pretrain" implies that

the execution of the whole new implementation was interrupted due to the
agent not behaving correctly, hence the implementation was changed to
exclude pre-training the agent. Consequently, the corresponding training
iterations account for the ones of the whole new version summed to the
ones of the partial implementation. 61

6.13 Percentage cost ratio for each local constraint and learning rate. 62
6.14 Average costs by local constraint. 62
6.15 Average costs by learning rate. 62

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	State of the art
	SPACE4AI-D
	SPACE4AI-R
	Other related works

	Reinforcement Learning
	The agent and the environment
	Policies and value functions
	Optimal policies
	The exploration-exploitation dilemma
	Overview of Reinforcement Learning methods
	Deep Q-learning

	FIGARO: reinForcement learnInG mAnagement acRoss the computing cOntinuum
	FIGARO architecture
	Reinforcement Learning problem
	State space and action space
	Cost function

	The hyperparameters

	FIGARO v2.0
	New state space definition
	New cost function
	New computation of the reward
	The new formula
	When the reward is computed

	Pre-fill the replay buffer and pre-train the agent

	Experimental results
	The exogenous workload
	The system
	The hyperparameters
	Results

	Conclusions and future developments
	Bibliography
	List of Figures
	List of Tables

