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Abstract: This thesis proposes an auto-profiling tool for OSCAR, an open-source
platform able to support serverless computing for scientific data-processing. The
tool, named OSCAR-P, is designed to automatically test a specified application
workflow on different hardware and node combinations, obtaining relevant infor-
mation on the timing of the execution of the individual components. It then
uses the collected data to build performance models using machine learning, mak-
ing it possible to predict the performance of the application on unseen configu-
rations. OSCAR-P has been tested on clusters with different architectures (x86
and ARM64) and with different workloads. The use case considered for the test is
a mask detection application that can be executed in a smart city to detect how
many people are not wearing a face mask in a certain area.
OSCAR-P proved its efficiency, greatly reducing the time needed to set up OSCAR,
collect the logs and process them manually. The preliminary results obtained on
the performance models accuracy are also promising, showing a mean absolute
percentage error lower than 20% in all the considered scenarios.
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1. Introduction

The client-server paradigm has been for years the standard computing model for industrial-level distributed
systems. That model evolved over time and nowadays we have edge systems, where data produced by devices
at the edge of the network has to be moved to a centralized data-center, processed, and then shipped back to
their origin point to be used. This is not efficient, as it increases both the bandwidth usage and the latency,
introducing a round-trip time delay for every access to the central servers. As the number of those edge devices
kept on growing [1], so did the amount of data they were capable of producing, and the combinations of this
two factors inevitably put an higher level of stress both on the network and on the remote servers [2]. However
as time passed those devices also became more technologically advanced, with improvements both to their
processing power and their storing capacity. The natural evolution of the system was therefore moving a part
of the computation on those machines at the edge of the network, close to where the data is produced [3].

The aim of this novel distributed computing paradigm is not to completely remove centralized data centers,
but to create a compute continuum that seamlessly integrates the edge devices with the remote servers, usually
running in the cloud, splitting the workload among them. The load sharing is not restricted to only two distinct
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entities either: the computation can happen on multiple layers, with the cloud on one side, IoT (e.g. AI-enabled
edge sensors) on the other, and edge servers in between, such as smartphones, Raspberry Pis or just PC and
laptops.
This approach offers several advantages: i) lower latency: by moving part of the computation where the data
resides we remove the round-trip-time delays needed to access the remote cloud data centers, resulting in faster
response times and better performance overall; ii) reduced bandwidth usage: local processing at the edge removes
the need to send huge amounts of data through the network, saving bandwidth, avoiding bottlenecks and leaving
more room for expansion; iii) improved privacy: the possibility to process some of the data on edge devices
means that said data can be "anonymized" on the spot before being communicated, ensuring that potentially
sensitive information are never moved and saved on the central server; iv) better scalability: edge devices are
usually cheap, and adding more to the network to help with data processing is both easy to implement and
economical.

Another novelty in cloud computing is represented by the introduction and quick rise in popularity [4][5] of a
new type of model called Functions as a Service, or FaaS for short, that breaks down complex applications in
workflows that run on reusable services. The FaaS model allows the execution of code, usually both reduced
in its scope and short-lived, inside of stateless containers activated by an event, e.g. the upload of a file. Data
processing systems can greatly benefit from this approach, as they can trigger the execution of resource-intensive
applications on demand just by uploading data inside a storage bucket, and obtain the results as soon as the
processing is done from another storage bucket. The use of containers instead of full virtual machines (VMs) both
reduces the development and deployment complexity and the resource usage, and given their stateless nature
they can be reused to serve another event as soon as the previous computation completes, without having to
be discarded and then recreated. The FaaS model is also more flexible, as the containers can be created or
destroyed dynamically in response to an increase or decrease of the workload, and therefore it works well in
scenarios with a workload that is on average low, interleaved with peaks of activity. For industries that rely
on public clouds this approach can turn out to be more economical, as they can now pay per seconds of actual
usage instead of paying a fixed rate at all times, regardless of how many resources are actually consumed [6].

This thesis is developed under the AI-SPRINT project1, that aims at executing AI applications in secure privacy-
preserving computing continuum supported by the OSCAR2 framework, a state-of-the-art runtime environment
for edge applications, built to support FaaS efficiently and on-premises. OSCAR is a porting of the SCAR
framework to an on-premises scenario, and it aims at creating an highly-parallel event-driven file-processing
serverless environment to execute general-purpose file-processing computing applications.

Achieving low latency and high throughput is one of the main drivers behind edge computing, however evaluating
performance of a complex application, whose components may be allocated on different levels of the computing
continuum, is a problem without an easy solution. There is a need for automated tools that can help with
the profiling of those components, able to predict execution times with a varying amount of resources available
(such as cores number). The end goal of such a tool is to guarantee upper bounds on applications execution,
and find the optimal hardware structure for deployment.

The goal of the thesis is therefore twofold:
• implement OSCAR-P, an auto-profiling framework built around OSCAR, able to automatically test a

specified application workflow on different hardware and node combinations, obtaining relevant informa-
tion on the timing of the execution of the individual components

• use the resulting data to build performance models using machine learning, making it possible to predict
the performance of the application on unseen configurations

This thesis is organized as follows. Section 2 presents relevant literature works related to the same area as
the subject of the thesis. Section 3 gives an overview of the OSCAR framework and its architecture. Section
4 explains in details the OSCAR-P goals and its components, while Section 5 focuses on the experimental
scenarios considered to validate the tool. Finally, Section 6 summarizes the achievements of the thesis and
introduces future work.

1https://www.ai-sprint-project.eu
2https://docs.oscar.grycap.net
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6. Conclusions and future work

During this thesis we achieved our goal of developing an auto-profiling framework for OSCAR, named OSCAR-
P, that can automatically test an application workflow on different hardware combinations and generate machine
learning performance models from the collected data.
The framework proved its efficiency, greatly reducing the time needed to set up OSCAR, collect the logs and
process them manually. With OSCAR-P the whole procedure is automatic and the user has just to compile the
configuration file and launch the tool. It also works on cluster with different architectures, having been tested
both on VM (x86) and Raspberry Pis (ARM64).
The results obtained from the experimental campaigns, even though only preliminary, were still good, with the
performance models having a mean absolute percentage error lower than 10% on interpolation and lower than
20% on extrapolation for the first testing campaign. The results were a bit worse on the second VM campaign
but the data collected was also more noisy due to the shorter execution times.
Future works include expanding OSCAR-P capabilities to enable the profiling of heterogeneous clusters, and
testing it on industrial-scale clusters.
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