
SPACE4AI-R: Runtime Management Tool for AI Applications Com-
ponent Placement and Resource Selection in Computing Continua

Tesi di Laurea Magistrale in
Mathematical Engineering - Ingegneria Matematica

Randeep Singh, 967445

Advisor:
Prof. Danilo Ardagna

Co-advisors:
Federica Filippini
Hamta Sedghani

Academic year:
2021-202

Abstract: The importance and pervasiveness of Artificial Intelligence (AI) are
dramatically increasing in these years, together with an accelerated migration to-
wards Internet of Things, determining the rise of the Edge computing paradigm.
According to this trend, Edge intelligence is expected to become the foundation of
many AI applications use cases, spanning from predictive maintenance to machine
vision and healthcare. Edge computing generates a fragmented scenario, where
computing and storage power are distributed among multiple devices with highly
heterogeneous capacities. In this framework, component placement and resource
selection become crucial to arrange in the most convenient way the available re-
sources of the Computing Continuum. In this work, we propose SPACE4AI-R,
a tool to effectively address the runtime management of AI applications compo-
nent placement and resource selection in the Computing Continuum. Through a
Random Search combined with a Stochastic Local Search algorithm, SPACE4AI-R
copes with runtime workload fluctuations by identifying the cost-optimal reconfig-
uration of the initial production deployment, while providing performance guar-
antees across heterogeneous resources including Edge devices and servers, Cloud
GPU-based Virtual Machines and Function as a Service solutions. Experimental
results show that our tool efficiently finds placement reconfigurations in a real use
case of identifying wind turbines blade damage, and can manage large-scale systems
providing remarkable cost savings over static placements, while keeping execution
time in the order of seconds.

Key-words: Component placement, Edge computing, Local Search, Optimization, Resource selection

1. Introduction

Nowadays, Artificial Intelligence (AI) is becoming increasingly popular in a wide range of sectors and industries.
According to Fortune Business Insights (2022), the global AI market size is projected to reach USD 1395 billion
in 2029, at a CAGR of 20.1% [1]. Cloud computing has represented one of the main computing paradigm for
AI and big data applications, but the recent technological advances in processors, memory and communications
initiated the Internet of Things (IoT) era, where a huge amount of data is generated by widespread end devices
(smart watches, smart city power grids, connected vehicles, smart homes are some examples) [2]. Since IoT
requires mobility support and geo-distribution in addition to location awareness, Cloud computing paradigm

1



alone is not suited for these latency-sensitive applications [3]. Also, if so many end devices send their data to
the Cloud, there may be a network overload, making Cloud prohibitive in this framework.
Edge computing paradigm has emerged as a solution to the Cloud computing limitations. It brings storage,
computation and network services near the end devices through the so called fog nodes, which can be switches,
cameras, routers, computers and servers, linked through a stable network connection [4]. Thanks to this
approach, Edge computing is characterized by low latency, wide geographic distribution, processing power closer
to the user and real time interactions, overcoming Cloud computing lacks [5]. Nonetheless, it is important to
remark that Edge computing is not a replacement to Cloud computing; if, on the one side, the main advantage
of Edge systems is to improve applications performance by reducing the latency, on the other side, Edge
resources have usually less computing capacity than the Cloud and can become a bottleneck in the computation.
Hence, if an application requires computational power which is not available at the Edge nodes, there should
still be the option to connect to the Cloud data centers [4], if delay requirements and network connections
allow so. Therefore, the Computing Continuum paradigm is the best approach: latency-sensitive tasks can be
distributed among Edge nodes while compute-intensive tasks are offloaded to the Cloud layers. At this point
it is clear that Edge computing generates a fragmented scenario, where the computational power is distributed
among devices with highly heterogeneous capacities and connectivity. In this framework, component placement
and resource selection are crucial to orchestrate at best the Computing Continuum resources, minimizing the
expected costs while meeting Quality of Service (QoS) requirements [2]. In particular, given an infrastructure
S and an application A, where S contains information on the resources (Cloud Virtual Machines, Edge nodes,
end devices) with their capacity (in terms of CPU, memory), and A contains information about the components
(how they invoke each other, how they exchange data), the goal of the placement problem it to find a mapping of
applications components to the infrastructure resources, while fulfilling hardware, network, privacy and Quality
of Service requirements [6] (see Figure 1).

Figure 1: The placement problem: mapping application on the infrastructure [6]

The component placement problem needs to be tackled in two different phases: design-time and runtime [7].
Design-time choices aim to determine the optimal allocation of the application components on the candidate
resources, satisfying all the requirements and the devices computational or storage constraints. However, in
practical applications, the application workload (requests per second to process) expected at design-time is often
subject to fluctuations due, for example, to variations in the generated data volumes [7]. For this reason, the
initially designed placement may become unfeasible or oversized depending on the input workload, so it has to
be continuously monitored and adapted online.
SPACE4AI-D, developed in [8], is a tool that tackles the component placement problem and resource selection
in the Computing Continuum at design-time, dealing with different application requirements. In this thesis, we
propose SPACE4AI-R, which, exploiting an efficient Random Search combined with a Stochastic Local Search
algorithm, tackles the runtime problem by identifying a suitable reconfiguration of the running placement able to
cope with the workload fluctuations. The Computing Continuum consists of heterogeneous resources, including
Edge devices and servers, Cloud GPU-based Virtual Machines and Function as a Service solutions
Design-time and runtime approaches have subtle but important differences. The most relevant one lies in their
required responsiveness: while a design-time tool is allowed to take as much time as needed (up to several
minutes) to find the initial production deployment (i.e., the initial placement), a runtime tool must provide a
feasible reconfiguration in few seconds at most, due to the online running application. Therefore, runtime tools
must be designed making appropriate cost-reactivity trade-offs while tuning the solver algorithms, as well as
implemented in a very efficient way to reduce the execution time.
We validated SPACE4AI-R through an experimental analysis divided in two parts. The first one deals with
a real use case application of 2 hours duration, consisting in wind turbines blade damage identification, in
three different computing scenarios. We simulate the dynamic workload fluctuations by considering a bi-modal
workload profile for the duration of the application, and request a reconfiguration every 5 minutes. Results show
that our tool is able to efficiently compute the placement reconfiguration in all scenarios, keeping execution time
below half a second. The second part deals with the scalability analysis, where we prove that our tool is able
to tackle small (5 components) to large-scale (15 components) systems, keeping the execution time around a

2



couple of seconds, successfully adapting the design-time tool proposed in [8] to the runtime framework. Finally,
we report the cost savings that can be obtained through the dynamic placement and reconfiguration mechanism
over a static placement (tuned on the maximum expected workload) that is kept fixed for the entire duration
of the application.
The remainder of this thesis is organized as follow. Related works are discussed in Section 2. Section 3 introduces
the basic application and resources models. Section 4 describes a real use case that can benefit from our tool.
Section 5 formulates the optimization problem, while Section 6 describes the heuristic solution. Experimental
results are discussed in Section 7, and final conclusions are drawn in Section 8.

2. Related work

Component placement problems are continuously gaining a lot of attention from the research community. In [9],
authors provided a classification of the literature proposals in terms of the placement purpose (e.g., scheduling,
offloading, distribution of physical resources), the computing paradigm (Cloud-Edge, only Cloud, only Edge),
and the optimization metrics (latency time, energy consumption, total cost of the placement). In [6], the authors
proposed a more specific review on the algorithms used to solve the placement problem, according to different
characteristics of the infrastructure S and the application A. They also highlighted typical bad practices in the
field (e.g., evaluation environments not matching real-case settings, insufficient number of simulations biasing
the validation of results, missing state-of-the art algorithms as comparison baseline), and provided useful rec-
ommendations to foster meaningful evaluation settings that could help both the academic and the industrial
world.
In [10], the authors proposed a tool to optimize resource allocation in the context of Deep Learning (DL) tasks
(e.g., face recognition, intelligent surveillance system, and so on). Each type of task is characterized by a unique
Deep Neural Network (DNN) model, partitionable in independent logical layers. Assuming that the tasks come
with a given arrival rate, the tool finds the optimal partitioning of the DNNs models and place the layers at the
Edge or at the Cloud, minimizing the long term expected End-to-End delay, under strict energy constraints.
They used a reinforcement learning approach to find the best partitioning, while designed a heuristic to com-
pute the optimal resource allocation for each DNN task. Results show that their approach outperforms the
current available alternatives, reducing the End-to-End delay from 0.5% to 11% compared to the other tools,
especially in tight energy budget scenarios. In [11], the authors coped with the task offloading in a multi-service
scenario with Edge-Cloud cooperation. They designed a flexible tool that can address concurrently the service
placement at the compatible devices, the computing resource allocation for each service, and the communication
rate allocation between the different devices in the Computing Continuum. The optimization aims to minimize
the total processing time, while guaranteeing the long term stability of the task queuing on all the Edge-Cloud
devices and servers, which is crucial to control the list of pending and backlogged tasks. The problem is trans-
formed into a deterministic Lyapunov-based formulation for each time instant, and a multi-timescale algorithm
manages the offloading at subsequent time slots.
Among the discussed proposals, [12, 13] are the closest to our approach. In [12], the authors modeled the com-
puting infrastructure as an Undirected Graph, where each node corresponds to the Edge and Cloud clusters,
characterized by specific hardware characteristics (CPU, memory) with the geographic location, and each edge
represents the network connection, characterized by bandwidth and latency. The Edge application, instead,
is modeled as a Directed Acyclic Graph (DAG), where each node is an application component characterized
by the requested hardware resources with the geographic location, and each edge is marked with a requested
bandwidth and latency. The provisioning problem is formulated as a single-objective program, aiming to min-
imize the total provision cost in terms of processing, memory and data transfer costs. The problem is solved
through a greedy approach, namely the Edge-Native Provisioning (ENP), which first splits the application into
subsets of star components sorted according to the number of links, and then greedily selects the best provision-
ing for each star component. In [13], the authors addressed again the multi-component application placement
problem, minimizing the total placement cost. They propose two heuristic algorithms, namely MATH-MCAPP
and G-MCAPP. The first, based on matching and local search techniques, is very efficient when the number
of components and devices is relatively limited, while G-MCAPP is a greedy algorithm designed for Mobile
Edge Computing (MEC) with a large number of servers and components. Results show that the two algorithms
outperforms the CPLEX solver in terms of execution time for small system instances, and they behave well
with large scale problems (100 components and 200 available resources).
The proposals discussed so far modeled the placement and resource selection as a single-objective optimization
problem (as we do in this work), focusing on delay optmization [10, 11], energy optimization [14, 15], and cost
optimization [12, 13]. However, several works frame the placement problem in the multi-objective optimization
branch. For instance, in [16] an approach for scheduling and offloading workflow tasks, represented as Directed
Acyclic Graph, has been proposed modelling the Fog-Cloud computing infrastructure as a Multi-Agent System

3



8. Conclusions

The online placement orchestration requires fast and reactive solutions able to reconfigure the system in real
time, i.e., while the AI applications are running, in order to cope with workload fluctuations. This work proposes
SPACE4AI-R, a tool to support application components placement and resource selection in the Computing
Continuum at runtime. The original design-time approach [8], not suited for the runtime framework due to
inadequate solving time, has been first adapted to the runtime problem by implementing the Random Search
exploiting the features of the faster C++, and then enhanced by adding an efficient Stochastic Local Search
downstream, designed to further reduce the placement cost. Experimental results show that our tool effectively
manages a real use case exploiting three different computing infrastructures, and can cope with large-scale
systems while providing important cost savings through the dynamic placement. SPACE4AI-R execution time
is of the order of seconds, being at least two orders of magnitude faster than the design-time approach, and yet
the costs of the computed solutions never exceed the ones of the design-time placements.
Future works will extend the Stochastic Local Search algorithm by investigating other neighborhood exploration
techniques possibly better than the first improving, as well as design new approaches based on different heuristics,
such as Tabu Search. Moreover, new performance models based on machine learning models, trained with real
use cases data, will be introduced to improve the resources response time estimation accuracy.

References

[1] Fortune Business Insights Pvt. Ltd. Artificial Intelligence (AI) Market Size Forecast, 2022. URL https://
www.fortunebusinessinsights.com/industry-reports/artificial-intelligence-market-100114.

[2] Breno Costa, Joao Bachiega, Leonardo Rebouças de Carvalho, and Aleteia P. F. Araujo. Orchestration
in Fog Computing: A Comprehensive Survey. ACM Comput. Surv., 55(2), 2022. ISSN 0360-0300. doi:
10.1145/3486221. URL https://doi.org/10.1145/3486221.

[3] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog Computing and Its Role in the
Internet of Things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing,
New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450315197. doi: 10.1145/
2342509.2342513. URL https://doi.org/10.1145/2342509.2342513.

[4] Sabireen H. and Neelanarayanan V. A Review on Fog Computing: Architecture, Fog with IoT, Algorithms
and Research Challenges. ICT Express, 7(2):162–176, 2021. ISSN 2405-9595. doi: https://doi.org/10.1016/
j.icte.2021.05.004. URL https://www.sciencedirect.com/science/article/pii/S2405959521000606.

[5] Michaela Iorga, Larry Feldman, Robert Barton, Michael Martin, Nedim Goren, and Charif Mahmoudi.
Fog Computing Conceptual Model, 2018-03-14 2018.

[6] Sven Smolka and Zolt Mann. Evaluation of Fog Application Placement Algorithms: A Survey. Computing,
104(6):1397–1423, jun 2022. ISSN 0010-485X. doi: 10.1007/s00607-021-01031-8. URL https://doi.org/
10.1007/s00607-021-01031-8.

[7] Hamta Sedghani, Federica Filippini, and Danilo Ardagna. A Randomized Greedy Method for AI Applica-
tions Component Placement and Resource Selection in Computing Continua. In 2021 IEEE International
Conference on Joint Cloud Computing (JCC), pages 65–70, 2021. doi: 10.1109/JCC53141.2021.00022.

[8] Hamta Sedghani, Federica Filippini, and Danilo Ardagna. A Random Greedy based Design Time Tool
for AI Applications Component Placement and Resource Selection in Computing Continua. In 2021 IEEE
International Conference on Edge Computing (EDGE), pages 32–40, 2021. doi: 10.1109/EDGE53862.2021.
00014.

[9] Julian Bellendorf and Zoltán Ádám Mann. Classification of optimization problems in fog computing. Future
Generation Computer Systems, 107:158–176, 2020. ISSN 0167-739X. doi: https://doi.org/10.1016/j.future.
2020.01.036. URL https://www.sciencedirect.com/science/article/pii/S0167739X19323568.

[10] Yi Su, Wenhao Fan, Li Gao, Lei Qiao, Yuan’an Liu, and Fan Wu. Joint DNN Partition and Resource
Allocation Optimization for Energy-Constrained Hierarchical Edge-Cloud Systems. IEEE Transactions on
Vehicular Technology, pages 1–15, 2022. doi: 10.1109/TVT.2022.3219058.

[11] Wenhao Fan, Liang Zhao, Xun Liu, Yi Su, Shenmeng Li, Fan Wu, and Yuan’an Liu. Collaborative Service
Placement, Task Scheduling, and Resource Allocation for Task Offloading with Edge-Cloud Cooperation.
IEEE Transactions on Mobile Computing, pages 1–18, 2022. doi: 10.1109/TMC.2022.3219261.

27

https://www.fortunebusinessinsights.com/industry-reports/artificial-intelligence-market-100114
https://www.fortunebusinessinsights.com/industry-reports/artificial-intelligence-market-100114
https://doi.org/10.1145/3486221
https://doi.org/10.1145/2342509.2342513
https://www.sciencedirect.com/science/article/pii/S2405959521000606
https://doi.org/10.1007/s00607-021-01031-8
https://doi.org/10.1007/s00607-021-01031-8
https://www.sciencedirect.com/science/article/pii/S0167739X19323568


[12] Baudouin Herlicq, Abderaouf Khichane, and Ilhem Fajjari. NextGenEMO: an Efficient Provisioning of
Edge-Native Applications. In ICC 2022 - IEEE International Conference on Communications, pages
1924–1929, 2022. doi: 10.1109/ICC45855.2022.9839012.

[13] Tayebeh Bahreini and Daniel Grosu. Efficient Algorithms for Multi-Component Application Placement in
Mobile Edge Computing. IEEE Transactions on Cloud Computing, pages 1–1, 2020. doi: 10.1109/TCC.
2020.3038626.

[14] Jing Bi, Kaiyi Zhang, Haitao Yuan, and Jia Zhang. Energy-Efficient Computation Offloading for Static
and Dynamic Applications in Hybrid Mobile Edge Cloud System. IEEE Transactions on Sustainable
Computing, pages 1–13, 2022. doi: 10.1109/TSUSC.2022.3216461.

[15] Ying Chen Shaoxuan Yun. Intelligent Traffic Scheduling for Mobile Edge Computing in IoT via Deep
Learning. Computer Modeling in Engineering & Sciences, 134(3):1815–1835, 2023. ISSN 1526-1506. doi:
10.32604/cmes.2022.022797. URL http://www.techscience.com/CMES/v134n3/49749.

[16] Marwa Mokni, Sonia Yassa, Jalel Eddine Hajlaoui, Mohamed Nazih Omri, and Rachid Chelouah. Multi-
objective fuzzy approach to scheduling and offloading workflow tasks in Fog-Cloud computing. Simulation
Modelling Practice and Theory, page 102687, 2022. ISSN 1569-190X. doi: https://doi.org/10.1016/j.
simpat.2022.102687.

[17] Ahmad Almadhor, Abdullah Alharbi, Ahmad M. Alshamrani, Wael Alosaimi, and Hashem Alyami. A
new offloading method in the green mobile cloud computing based on a hybrid meta-heuristic algo-
rithm. Sustainable Computing: Informatics and Systems, 36:100812, 2022. ISSN 2210-5379. doi: https://
doi.org/10.1016/j.suscom.2022.100812. URL https://www.sciencedirect.com/science/article/pii/
S2210537922001433.

[18] Yeting Guo, Fang Liu, Nong Xiao, Zhaogeng Li, Zhiping Cai, Guoming Tang, and Ning Liu. PARA:
Performability-aware resource allocation on the edges for cloud-native services. International Journal
of Intelligent Systems, 37(11):8523–8547, 2022. doi: https://doi.org/10.1002/int.22954. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/int.22954.

[19] Xun Shao, Go Hasegawa, Mianxiong Dong, Zhi Liu, Hiroshi Masui, and Yusheng Ji. An Online Orchestra-
tion Mechanism for General-Purpose Edge Computing. IEEE Transactions on Services Computing, pages
1–1, 2022. doi: 10.1109/TSC.2022.3164149.

[20] Danilo Ardagna and Barbara Pernici. Adaptive Service Composition in Flexible Processes. IEEE Trans-
actions on Software Engineering, 33(6):369–384, 2007. doi: 10.1109/TSE.2007.1011.

[21] Maryam Ebrahimi, Alexandre da Silva Veith, Moshe Gabel, and Eyal de Lara. Combining DNN Partitioning
and Early Exit. In Proceedings of the 5th International Workshop on Edge Systems, Analytics and Net-
working, EdgeSys ’22, page 25–30, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450392532. doi: 10.1145/3517206.3526270. URL https://doi.org/10.1145/3517206.3526270.

[22] Lizheng Jiang, Yunman Pei, and Jiantao Zhao. Overview Of Serverless Architecture Research. Journal
of Physics: Conference Series, 1453(1):012119, jan 2020. doi: 10.1088/1742-6596/1453/1/012119. URL
https://dx.doi.org/10.1088/1742-6596/1453/1/012119.

[23] Amazon. AWS Lambda: Run code without thinking about servers or clusters, 2022. URL https://aws.
amazon.com/lambda/.

[24] Amazon. AWS Lambda Pricing, 2022. URL https://aws.amazon.com/lambda/pricing/.

[25] Microsoft. Azure Functions pricing, 2022. URL https://azure.microsoft.com/en-us/pricing/
details/functions/.

[26] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative system performance: computer
system analysis using queueing network models. Prentice-Hall, Inc., 1984. ISBN 978-01374697580.

[27] Nima Mahmoudi and Hamzeh Khazaei. Performance Modeling of Serverless Computing Platforms. IEEE
Transactions on Cloud Computing, pages 1–15, 2020. doi: 10.1109/TCC.2020.3033373.

[28] Uma Tadakamalla and Daniel A Menasce. Autonomic Resource Management for Fog Computing. IEEE
Transactions on Cloud Computing, pages 1–1, 2021. doi: 10.1109/TCC.2021.3064629.

28

http://www.techscience.com/CMES/v134n3/49749
https://www.sciencedirect.com/science/article/pii/S2210537922001433
https://www.sciencedirect.com/science/article/pii/S2210537922001433
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22954
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22954
https://doi.org/10.1145/3517206.3526270
https://dx.doi.org/10.1088/1742-6596/1453/1/012119
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/pricing/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/


[29] Amazon. AWS Step Function pricing, 2022. URL https://aws.amazon.com/step-functions/pricing/.

[30] Microsoft. Azure Logic Apps, 2022. URL https://azure.microsoft.com/en-us/products/
logic-apps/.

[31] Sebastián Risco, Germán Moltó, Diana M Naranjo, and Ignacio Blanquer. Serverless Workflows for Con-
tainerised Applications in the Cloud Continuum. Journal of Grid Computing, 19, 2021.

[32] Sean Luke. Essentials of Metaheuristics . Lulu, second edition, 2013. Available for free at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

[33] Randeep Singh. SPACE4AI-R GitHub repository, 2022. URL https://github.com/randosrandom/
Space4AI/tree/space4ai-v1.1.

[34] Holger H. Hoos and Thomas Stützle. Stochastic Local Search Algorithms: An Overview, pages 1085–
1105. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015. ISBN 978-3-662-43505-2. doi: 10.1007/
978-3-662-43505-2_54. URL https://doi.org/10.1007/978-3-662-43505-2_54.

[35] Heber F. Amaral, Sebastián Urrutia, and Lars M. Hvattum. Delayed Improvement Local Search. Journal
of Heuristics, 27(5):923–950, 2021. ISSN 1381-1231. doi: 10.1007/s10732-021-09479-9. URL https:
//doi.org/10.1007/s10732-021-09479-9.

[36] Eugeniusz Nowicki and Czeslaw Smutnicki. A Fast Taboo Search Algorithm for the Job Shop Problem.
Management Science, 42(6):797–813, 1996. ISSN 00251909, 15265501. URL http://www.jstor.org/
stable/2634595.

[37] Mauricio G. C. Resende and Celso C. Ribeiro. Greedy Randomized Adaptive Search Procedures: Advances
and Extensions, pages 169–220. Springer International Publishing, Cham, 2019. ISBN 978-3-319-91086-4.
doi: 10.1007/978-3-319-91086-4_6. URL https://doi.org/10.1007/978-3-319-91086-4_6.

[38] Pierre Hansen and Nenad Mladenović. First vs. best improvement: An empirical study. Discrete Applied
Mathematics, 154(5):802–817, 2006. ISSN 0166-218X. doi: https://doi.org/10.1016/j.dam.2005.05.020.
URL https://www.sciencedirect.com/science/article/pii/S0166218X05003070.

[39] Danilo Ardagna Hamta Sedghani, Federica Filippini. SPACE4AI-D GitLab, 2022. URL https://gitlab.
polimi.it/ai-sprint/space4ai-d.

[40] Danilo Ardagna, Michele Ciavotta, Riccardo Lancellotti, and Michele Guerriero. A hierarchical receding
horizon algorithm for qos-driven control of multi-iaas applications. IEEE Transactions on Cloud Computing,
9(2):418–434, 2021. doi: 10.1109/TCC.2018.2875443.

[41] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring Network Structure, Dynamics, and
Function using NetworkX. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman, editors, Proceedings
of the 7th Python in Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.

29

https://aws.amazon.com/step-functions/pricing/
https://azure.microsoft.com/en-us/products/logic-apps/
https://azure.microsoft.com/en-us/products/logic-apps/
https://github.com/randosrandom/Space4AI/tree/space4ai-v1.1
https://github.com/randosrandom/Space4AI/tree/space4ai-v1.1
https://doi.org/10.1007/978-3-662-43505-2_54
https://doi.org/10.1007/s10732-021-09479-9
https://doi.org/10.1007/s10732-021-09479-9
http://www.jstor.org/stable/2634595
http://www.jstor.org/stable/2634595
https://doi.org/10.1007/978-3-319-91086-4_6
https://www.sciencedirect.com/science/article/pii/S0166218X05003070
https://gitlab.polimi.it/ai-sprint/space4ai-d
https://gitlab.polimi.it/ai-sprint/space4ai-d

	Introduction
	Related work
	Application and resource models
	Application components model
	Quality of Service requirements
	Resources
	Network
	Resources costs

	Running example
	Optimization problem
	Decision variables and allocation constraints
	Performance models
	Edge resources and Cloud Virtual Machines
	Function as a Service

	Network transfer time
	Local and global QoS constraints
	Costs
	Formulation

	Solution algorithm
	Random Search
	Stochastic Local Search
	Move Cloud to Edge
	Move FaaS to VM
	Change FaaS
	Drop Resource
	Change Resource
	Change Deployment
	Algorithm description


	Experimental results
	Use case analysis
	Scenario A
	Scenario B
	Scenario C

	Scalability analysis
	Dynamic placement cost savings

	Conclusions
	Appendix



