

atmosphere-eubrazil.eu

@AtmosphereEUBR

Gray-Box Models for Performance Assessment of Spark Applications

M. Lattuada, E. Gianniti, M. Hosseini, *D. Ardagna*, A. Maros, F. Murai, A. P. Couto da Silva and J.M. Almeida

Politecnico di Milano, Italy Universidade Federal de Minas Gerais, Brazil

> Co-funded by the European Commission Horizon 2020 - Grant #777154

Contextualizing Performance Models

• **Develop models** for:

- Identify minimum cost configuration with a priori deadlines
- Allow the adaptive actuation mechanisms to predict if QoS objective will be reached
- Assessing (a posteriori) the main performance metrics in multi-tenancy environments
- Evaluate if an application **run was affected by resource contention**

• Approach:

- Gray box models based on Machine Learning (ML)
- Open source ML library
- Open source benchmarks

The adoption of accurate models allows **anticipating QoS violations** and **increasing cloud services trustworthiness** by **improving** their **performance**

ML Models overview

• **Regression Models:** l1-regularized Linear Regression, Neural Network, Decision Tree, Random Forests, and Support Vector Regression

• Hyper-parameters optimization

ML Experiments Settings

- Workloads:
 - TPC-DS the industry benchmark (Query 26) for data warehouse systems
 - ML benchmarks (K-means) from the Sparkbench library
 - **SparkDL** developed on top of Sparkbench

• Platforms:

- Microsoft HDInsights on Azure cloud computing service
- IBM Power8 Cluster dedicated cluster

ML Experiments Settings

Data Extrapolation

• Sampling scheme analysis

Workload	Core Inter	polation	Data Extrapolation		
workload	Training	Test	Training	Test	
Query 26 [GB]	750	750	250, 750	1000	
K-means [Rows]	15	15	5, 10, 15	20	
SparkDL [Images]	1500	1500	1000, 1500	2000	

Core Interpolation

Evaluation Metric: •

Mean Absolute Percentage Error: •

$$MAPE = \frac{100\%}{N} \sum_{k=1}^{N} |\frac{y_k - \hat{y}_k}{y_k}|$$

Comparison with State of the Art Solutions

- Ernest Model by Spark inventors
- Pure black-box approach:
 - Non Negative Least Square Regression (NNLS)
 - Features:
 - Ratio of data size to number of cores
 - Log of number of cores
 - Data size
 - Number of cores
 - Number of TensorFlow cores (SparkDL only)

S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica. "Ernest: Efficient Performance Prediction for Large-Scale Advanced Analytics". In: 13th USENIX Symposium on Networked Systems Design and Implementation. 2016, pp. 363–378.

DAG structure constant across different runs

Type of Knowledge	Features
	- Ratio of data size to number of cores
A Driani	- Log of number of cores
АРПОП	- Data size
	- Number of cores
	- Number of TensorFlow cores (SparkDL only)
	- number of tasks
	- max/avg time over tasks
	- max/avg shuffle time
A Posteriori	- max/avg number of bytes transmitted between stages
	- number of executor cores
	- inverse of number of executor cores
A Destariori (Spork DL)	- individual TensorFlow calls execution time
A Posteriori (SparkDL)	- inverse of total number of cores

Interpolation Scenario

	Ernest	Gray Box					
		DT	LR	NN	RF	SVR	
C1	1.50	9.64	4.46	7.10	6.71	7.35	
C2	1.64	9.92	8.82	5.57	12.32	20.53	
C3	1.71	16.12	6.23	4.24	15.31	10.25	
C4	1.66	27.05	10.62	6.09	14.37	16.92	
C5	1.59	25.54	42.08	6.23	44.60	39.74	
C6	1.70	11.39	35.80	6.75	41.44	68.95	

Extrapolation Scenario

	Ennort	Gray Box					
	Ernest	DT	LR	NN	RF	SVR	
C1	7.49	37.13	32.91	10.23	44.16	38.08	
C2	7.44	35.01	27.26	36.07	40.66	32.30	
C3	7.31	32.39	36.36	20.18	47.46	38.74	
C4	7.26	32.75	32.29	48.80	46.29	32.31	
C5	7.59	41.93	12.41	21.90	31.50	18.11	
C6	8.02	38.45	24.05	19.91	32.22	29.22	

Interpolation Scenario

	Ernest	Gray Box					
		DT	LR	NN	RF	SVR	
C1	126.69	17.27	74.04	11.99	105.31	28.09	
C2	148.10	21.41	83.33	10.27	112.77	29.13	
C3	161.35	46.46	122.07	47.30	67.58	36.14	
C4	176.52	49.66	143.33	47.60	81.70	24.47	
C5	187.00	31.20	273.19	29.88	99.74	84.00	
C6	159.88	21.90	166.57	26.66	59.40	66.75	
C7	178.08	31.59	159.44	47.65	102.96	38.74	

Extrapolation Scenario

	Ernest	Gray Box					
		DT	LR	NN	RF	SVR	
C1	167.07	26.47	20.24	59.50	26.07	16.04	
C2	183.09	26.31	13.15	91.60	29.19	18.63	
C3	200.83	37.28	31.86	131.54	33.47	30.58	
C4	204.42	69.61	24.24	453.67	32.08	18.67	
C5	221.09	26.89	26.86	16.01	39.72	25.29	
C6	206.59	21.19	37.72	37.39	29.61	34.16	
C7	208.37	29.44	43.14	145.81	30.21	24.06	

	Ernest	Gray Box				
		DT	LR	NN	RF	SVR
C1	10.48	5.16	5.60	3.84	5.87	4.12
C2	6.30	5.67	9.47	11.32	5.56	4.66
C3	5.71	6.40	3.70	5.07	8.29	4.96

	Ernost	Gray Box					
	Ernest	DT	LR	NN	RF	SVR	
C1	43.49	33.10	10.73	25.04	36.72	27.82	
C2	37.39	34.94	10.04	17.64	35.47	32.13	
C3	36.81	32.19	14.76	9.90	35.75	32.97	

ML Models Results Summary

- Gray-box models are effective for performance assessment to identify performance degradation (about 4-25% percentage error)
 - Work better when the application data size is fixed
- Comparison with Ernest:in most cases, our best models improve Ernest considerably, especially when few profiling configurations are available in the training set and when workloads are less regular

- There is **no ML technique** which always outperforms the others, hence different techniques have to be evaluated in each scenario to choose the best model
- Study the performance of Spark applications running on GPU- based clusters
- Validate the models on **production environments**

Thanks for your attention...

