
Profiling and partitioning of Deep
Neural Networks on multiple de-
vices

Tesi di Laurea Magistrale in
Mathematical Engineering - Ingegneria Matematica

Author: Luca Crippa

Student ID: 970627
Advisor: Prof. Danilo Ardagna
Co-advisors: Abednego Wamuhindo Kambale
Academic Year: 2022-23

i

Abstract

The majority of current applications in the fields of speech and image processing relies on
Deep Neural Networks (DNNs). Recent works showed that, thanks to the more powerful
and efficient mobile devices available nowadays, it is possible to split the execution of
such DNNs between mobile devices and cloud, with the benefit of reducing the energy
consumption of the devices, the total execution time of the neural networks, and the net-
work load towards the servers. In this context, this thesis aims to study the partitioning
and the execution of DNNs on multiple devices for Smart Eyewear applications. The
considered scenario is the one in which a DNN is executed conjointly by three devices:
the smart glasses, a mobile phone or another edge device, and a remote cloud server.
Considering the already availabe data obtained by studying the execution of DNNs only
on the mobile device and the cloud, this work proves that the use of machine learning
to predict the inference time of the layers of unseen networks is not a feasible option, so
that the most effective way to accurately understand the performance of a network on a
particular device is through profiling. It then moves to study the full scenario in which an
initial segment of the DNN is run also on the glasses, and it develops a tool for profiling
the excution of DNNs on more than two devices. The tool, named Onnx Multi-Device
Profiler (OMDP), is capable of profiling the execution of a network on three or more
devices, automatically extracting and running the required submodels. Eventually, in a
case study that considered the variants of YOLOv5, it is proven that, by combining the
inference times profiled by OMDP with the solutions to the K shortest path problem,
it is possible to analyse in detail the optimal partitioning and the execution of DNN on
multiple devices, even in the case in which the bandwidths between the devices fluctuate
over time, as in a real life scenario.

Keywords: Deep Neural Networks, DNN partitioning, DNN profiling, machine learn-
ing, K shortest paths, Shapley values.

Abstract in lingua italiana

La maggior parte delle attuali applicazioni negli ambiti dello speech processing e dell’image
processing si basa sull’utilizzo di Deep Neural Networks (DNN). Studi recenti hanno
mostrato che, grazie a più potenti ed efficienti dispositivi mobili presenti sul mercato
oggi, è possibile partizionare l’esecuzione di tali reti neurali tra dispositivi mobili e cloud,
con il vantaggio di ridurre il consumo energetico dei dispositivi, il tempo di esecuzione
totale delle DNN e il carico di rete sui server. In questo contesto, questa tesi si pone
l’obiettivo di studiare il partizionamento e l’esecuzione di DNN su più dispositivi ai fini
dello sviluppo di occhiali smart. Lo scenario considerato è quello in cui una rete neurale
è eseguita congiuntamente da tre dispositivi: gli occhiali smart, un dispositivo mobile o
un altro edge device e un server cloud remoto. Considerando i dati già disponibili ot-
tenuti studiando l’esecuzione delle DNN solo su dispositivo mobile e cloud, questo lavoro
dimostra che attraverso l’uso del machine learning non si è in grado di prevedere il tempo
di esecuzione dei layer di reti sconosciute, e quindi il modo più efficace per studiare le
prestazioni di una rete neurale su un dato dispositivo è attraverso la sua profilazione.
Viene quindi studiato lo scenario completo in cui un segmento iniziale della rete neu-
rale è eseguito anche sugli occhiali, e viene sviluppato uno strumento per la profilazione
dell’esecuzione di DNN su più di due dispositivi. Lo strumento, chiamato Onnx Multi-
Device Profiler (OMDP), è in grado di profilare l’esecuzione di una rete neurale su tre o
più dispositivi, estraendo in automatico ed eseguendo i sottomodelli richiesti dalla con-
figurazione specifica. Infine in un caso studio che considera le varianti di YOLOv5, viene
dimostrato che, combinando i tempi di esecuzione profilati da OMDP con le soluzioni al
K shortest paths problem, è possibile analizzare in dettaglio il partizionamento ottimale
e l’esecuzione delle DNN su più dispositivi, anche nel caso in cui le larghezze di banda
delle connessioni tra i dispositivi oscillino nel tempo, come accade in casi reali.

Parole chiave: Deep Neural Networks, reti neurali, partizionamento di reti neurali,
profilazione di reti neurali, machine learning, K shortest paths, Shapley values.

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Artificial Neural Networks 3
1.1 The perceptron . 3
1.2 Stochastic Gradient Descent . 4
1.3 Feed-forward neural networks . 5
1.4 Training a neural network . 6
1.5 Convolutional layers . 7
1.6 State of the art . 8
1.7 ONNX and ONNX Runtime . 10

2 Assessment of Previous Results 11
2.1 Onnx-splitter . 11

2.1.1 Features collection . 14
2.2 Inference Time Prediction . 15
2.3 Exploratory Analysis . 16
2.4 Overview of the Machine Learning models 26
2.5 Predicting unseen layers of the same network 26

2.5.1 ResNets . 29
2.5.2 VGG16 . 32
2.5.3 DenseNet . 33
2.5.4 MobileNet . 33
2.5.5 Conclusions . 35

vi | Contents

2.6 Predicting new unseen networks . 35
2.7 Predicting unseen networks relying on a synthetic dataset 38

2.7.1 Exploratory analysis . 39
2.7.2 Predicting B5 from B2, B3 and B4 41
2.7.3 Predicting C networks from B ones 45
2.7.4 Conclusion . 46

3 Onnx Multi-Device Profiler 47
3.1 The algorithm . 47
3.2 Actual implementation and profiling pipeline 51

3.2.1 Initial partitioning . 51
3.2.2 Profiling . 53
3.2.3 The client role . 53
3.2.4 The first server layer . 54
3.2.5 The second server layer . 55
3.2.6 Profiling post-processing and data visualization 55
3.2.7 Output of the profiling pipeline . 55
3.2.8 Measuring the networking time . 59

3.3 OpenVINO and the Neural Compute Stick 2 61

4 Finding the optimal partition points 63
4.1 K shortest path . 63
4.2 A little of notation . 64
4.3 Breadth-First Search . 65
4.4 Eppstein’s algorithm . 67
4.5 Lazy version of the Eppstein’s algorithm 69
4.6 Estimating the original bandwidth . 70

5 YOLOv5 Analysis 73
5.1 Premises . 75
5.2 First scenario . 78
5.3 Second scenario . 81
5.4 Third scenario . 85

5.4.1 The problem . 85
5.4.2 Trivial approach . 87
5.4.3 Adjustment approach . 87
5.4.4 Empirical approach . 87
5.4.5 Shapley-values approach . 88

5.4.6 Results . 89
5.4.7 Comparison with the first scenario 95

5.5 Fourth scenario . 97
5.6 Final remarks . 100
5.7 Variability in bandwidths . 101

5.7.1 Data collection . 101
5.7.2 Results . 104

6 Conclusions and future developments 107

Bibliography 109

A Appendix A 113

B Appendix B 117

C Appendix C 121

Acknowledgements 125

1

Introduction

The majority of current applications in the fields of speech and image processing relies
on Deep Neural Networks (DNNs). While very accurate on their tasks, DNNs are very
complex and sophisticated models that require suitable hardware to be run. Until recent
years, the status-quo approach was to run the full models on the cloud, due to the low
computational power of available mobile devices. A recent work [17] has shown that,
thanks to the more powerful and efficient devices available nowadays, it is possible to split
the execution of DNNs between mobile devices and cloud, with the benefit of reducing
the energy consumption of the devices, the total execution time of the neural networks,
and of reducing the pressure and the network load towards the servers. However, the joint
execution of a DNN requires to upload to the cloud the output tensor of the first slice of the
model, and depending on the size of such tensor and on the network bandwidth between
the devices, the data transfer may even worsen the total execution time. As a consequence,
an accurate study that considers the size of transferred data, the network bandwidth of
the connection between the devices, and the computing power of such devices, is required
to find the optimal partition point where to split DNNs in order to minimize the total
execution time. In the context of the development of the new smart glasses, in this thesis
we meticulously study the partitioning and profiling of DNNs on multiple devices. The
goal is to profile and analyse in detail the execution of DNNs on two and especially three
devices, also in the case in which the bandwidths between the devices fluctuate over time,
as in a real life scenario, in order to understand how to reduce the total execution time
and the energy consumption of the future DNN-based applications that will run on the
smart glasses.
The thesis is organised as follows: chapter 1 aims to give to the reader a general overview
of the neural networks, helping to understand the subsequent chapters. In chapter 2 we
will assess the results obtained by [4] that studied the scenario in which the Smart Eyewear
(SEW) does not have enough computing capacity or memory to process a complete DNN
nor any of its layers, so that the computation of the network is split between a mobile
device connected to the glasses and the cloud. The chapter revolves around the use of
machine learning models to predict the behaviour of unseen neural networks when run on

2 | Introduction

the same hardware. From chapter 3 we focus also on a different scenario in which the SEW
has some computational power that will enable the device to run all or some DNN layers.
Indeed, the chapter develops a new tool, Onnx Multi-Device Profiler (OMDP), capable of
profiling the execution of DNNs on more that two devices. Eventually, in chapter 4 we
look to an additional tool, network_butcher, which solves the K shortest paths problem
to find the best split nodes in which we may partition the DNNs, and in chapter 5 we
provide some concrete results obtained profiling the available variants of YOLOv5 using
OMDP and we compare them with the paths suggested by network_butcher, varying the
bandwidths between the considered devices.

107

6| Conclusions and future

developments

In this thesis, our aim was to study the partitioning and the profiling of DNNs on multiple
devices. In this final chapter, let us recall the discussed topics and our conclusions. In
chapter 2 we assessed the results in [4], where the author studied the scenario in which the
computation of the network is split between a mobile device connected to the glasses and
the cloud. Particularly, we enhanced the analysis done in [4] with the aim to use machine
learning models to reduce the profiling to only a subset of the layers of a network, and
eventually to entirely skip the profiling on unseen networks. We concluded that, even if
machine learning may be a reliable approach in some specific contexts, where the layers
of the networks are similar in structure and composition, in the more general scenario
the use of machine learning is not feasible, since we work with networks with large and
complex layers. In chapter 3 we developed OMDP in order to profile the execution of a
DNN on more than two devices, in particular on three devices, since we were interested
to analyse the scenario in which the execution of the network is split among the the
glasses, a mobile device and the cloud. To reach our goal, we implemented an ad hoc
algorithm that allows us to profile each submodel only once on the considered devices. In
chapter 4 we looked at the math behind network_butcher, a tool that, given the profiled
inference times, solves the K shortest pahts problem to find the best way to partition a
network. In chapter 5 we provided some concrete results obtained by profiling the variants
of YOLOv5 via OMDP, and we compared the profiled data with the paths suggested by
network_butcher. To deal with the scenarios in which it was not possible to estimate
the inference times of a DNN segment with the sum of the inference times of its layers, we
proposed a novel approach based on game theory. Additionally, we used the data profiled
with OMDP and network_butcher to analyse the partitioning of YOLOv5l in a realistic
scenario in which the bandwidths between the devices fluctuate over time. Chapter 5
showed that, relying on OMDP and on network_butcher, it is possible to perform a reliable
and detailed analysis of the partition and of the execution of a DNN on multiple devices.
This analyses can obviously be repeated for different neural networks. For the analysis

108 6| Conclusions and future developments

reported in chapter 5, we used the odroid, the laptop, and the desktop to simulate the
execution of the DNNs respectively on the glasses, on the mobile device, and on the cloud.
Since this thesis aimed at studying the profiling and partitioning of DNNs on multiple
devices specifically for Smart Eyewear Applications, a natural prosecution would be to
reproduce the analysis done in chapter 5 with different hardwares, to better simulate
which will be the real functioning of the glasses and their interaction with other devices.

109

Bibliography

[1] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, A. M. Umar, O. U. Linus,
H. Arshad, A. A. Kazaure, U. Gana, and M. U. Kiru. Comprehensive review of
artificial neural network applications to pattern recognition. IEEE Access, 7:158820–
158846, 2019. doi: 10.1109/ACCESS.2019.2945545.

[2] AI-SPRINT. BlurryFaces, 2020. URL https://gitlab.polimi.it/ai-sprint/

scar/-/tree/master/examples/mask-detector-workflow/blurry-faces.

[3] G. Boracchi. Convolutional neural networks. Slides from the course on Artificial
Neural Networks and Deep Learning, 2021.

[4] E. I. Chirica. An approach and a tool for the performance profiling and prediction of
partitioned Deep Neural Networks in Computing Continua Environments. Master’s
thesis, Politecnico di Milano, 12 2022.

[5] I. Corporation. OpenVINO, 2023. URL https://docs.openvino.ai/latest/home.

html.

[6] L. Crippa. Notes. Notes from the course on Numerical Analysis for Machine Learning
given by professor Miglio E., 2022.

[7] U. P. de València (Spain). OSCAR, 2022. URL https://docs.oscar.grycap.net/.

[8] G. V. Demirci and H. Ferhatosmanoglu. Partitioning sparse deep neural networks
for scalable training and inference. Proceedings of the ACM International Conference
on Supercomputing, 2021.

[9] D. Eppstein. Finding the k shortest paths. SIAM Journal on computing, pages
652–673, 1998.

[10] F. L. Facchinetti. Network butcher, 2023. URL https://github.com/faccus/

network_butcher.

[11] W. Foundation. Network time protocol, 2023. URL https://en.wikipedia.org/

wiki/Network_Time_Protocol.

https://gitlab.polimi.it/ai-sprint/scar/-/tree/master/examples/mask-detector-workflow/blurry- faces
https://gitlab.polimi.it/ai-sprint/scar/-/tree/master/examples/mask-detector-workflow/blurry- faces
https://docs.openvino.ai/latest/home.html
https://docs.openvino.ai/latest/home.html
https://docs.oscar.grycap.net/
https://github.com/faccus/network_butcher
https://github.com/faccus/network_butcher
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/Network_Time_Protocol

110 | Bibliography

[12] G. Guo and J. Zhang. Energy-efficient incremental offloading of neural network
computations in mobile edge computing. GLOBECOM 2020 - 2020 IEEE Global
Communications Conference, pages 1–6, 2020.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
doi: 10.1109/CVPR.2016.90.

[14] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected
convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2261–2269, 2017. doi: 10.1109/CVPR.2018.00474.

[15] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon. Ionn: Incremental offloading of
neural network computations from mobile devices to edge servers. Proceedings of the
ACM Symposium on Cloud Computing, SoCC ’18, pages 401–411, 2018.

[16] V. M. Jiménez and A. Marzal. A lazy version of eppstein’s k shortest paths algorithm.
International Workshop on Experimental and Efficient Algorithms Springer, 2003.

[17] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang. Neuro-
surgeon: Collaborative intelligence between the cloud and mobile edge. ASPLOS ’17:
Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 615 – 629, 2017. doi:
https://doi.org/10.1145/3037697.3037698.

[18] Z. Li, M. Paolieri, and L. Golubchick. Predicting inference latency of neural archi-
tectures on mobile devices. ICPE ’23: Proceedings of the 2023 ACM/SPEC Inter-
national Conference on Performance Engineering, pages 99–112, 2023.

[19] F. Martins, C. de Oliveira, and E. Borin. Partitioning convolutional neural networks
to maximize the inference rate on constrained iot devices. Future internet, 2019.

[20] M. Matteucci. Artificial neural networks and deep learning - from perceptrons to
feed forward neural networks. Slides from the course on Artificial Neural Networks
and Deep Learning, 2021.

[21] Microsoft. ONNX Runtime, 2023. URL https://onnxruntime.ai/.

[22] A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu, X. Zhang, D. Rybkin,
Z. Yang, Z. M. Mao, F. Qian, and Z. L. Zhang. A variegated look at 5g in the wild:
Performance, power, and qoe implications. SIGCOMM 2021 - Proceedings of the
ACM SIGCOMM 2021 Conference, pages 610–625, 8 2021. doi: 10.1145/3452296.
3472923. URL https://doi.org/10.1145/3452296.3472923.

https://onnxruntime.ai/
https://doi.org/10.1145/3452296.3472923

6| BIBLIOGRAPHY 111

[23] Pallets. Flask API Documentation, 2022. URL https://flask.palletsprojects.

com/en/2.2.x/api/.

[24] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4510–4520, 2018. doi: 10.1109/CVPR.2018.
00474.

[25] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015.

[26] ultralytics. YOLOv8, 2023. URL https://github.com/ultralytics/ultralytics.

[27] ultralytics. YOLOv5, 2023. URL https://github.com/ultralytics/yolov5.

[28] F. Wilhelmi. [ITU AI/ML Challenge 2021] Dataset IEEE 802.11ax Spatial Reuse,
Sept. 2021. URL https://doi.org/10.5281/zenodo.5656866. Test dataset with
actual throughput values (solution of the AI Challenge 2021).

[29] Z. Zhao, K. M. Barijough, and A. Gerstlauer. Deepthings: Distributed adaptive deep
learning inference on resource- constrained iot edge clusters. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pages 2348–2359, 2018.

https://flask.palletsprojects.com/en/2.2.x/api/
https://flask.palletsprojects.com/en/2.2.x/api/
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/yolov5
https://doi.org/10.5281/zenodo.5656866

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Artificial Neural Networks
	The perceptron
	Stochastic Gradient Descent
	Feed-forward neural networks
	Training a neural network
	Convolutional layers
	State of the art
	ONNX and ONNX Runtime

	Assessment of Previous Results
	Onnx-splitter
	Features collection

	Inference Time Prediction
	Exploratory Analysis
	Overview of the Machine Learning models
	Predicting unseen layers of the same network
	ResNets
	VGG16
	DenseNet
	MobileNet
	Conclusions

	Predicting new unseen networks
	Predicting unseen networks relying on a synthetic dataset
	Exploratory analysis
	Predicting B5 from B2, B3 and B4
	Predicting C networks from B ones
	Conclusion

	Onnx Multi-Device Profiler
	The algorithm
	Actual implementation and profiling pipeline
	Initial partitioning
	Profiling
	The client role
	The first server layer
	The second server layer
	Profiling post-processing and data visualization
	Output of the profiling pipeline
	Measuring the networking time

	OpenVINO and the Neural Compute Stick 2

	Finding the optimal partition points
	K shortest path
	A little of notation
	Breadth-First Search
	Eppstein's algorithm
	Lazy version of the Eppstein's algorithm
	Estimating the original bandwidth

	YOLOv5 Analysis
	Premises
	First scenario
	Second scenario
	Third scenario
	The problem
	Trivial approach
	Adjustment approach
	Empirical approach
	Shapley-values approach
	Results
	Comparison with the first scenario

	Fourth scenario
	Final remarks
	Variability in bandwidths
	Data collection
	Results

	Conclusions and future developments
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Acknowledgements

