
FIGARO: reinForcement learnInG mAnagement acRoss computing cOn-
tinua

Tesi di Laurea Magistrale in
Mathematical Engineering - Ingegneria Matematica

Andrea De Bettin, 10573185
Fabio Lavezzo, 10609185

Advisor:
Prof. Danilo Ardagna

Co-advisors:
Federica Filippini
Hamta Sedghani

Academic year:
2021-2022

Abstract: The steady increase of Artificial Intelligence applications forced to re-
think the old paradigm of Cloud computing due to the growth of the data size to be
exchanged and, as a consequence, its cost and its latency delay. Edge computing
is a recent paradigm that tries to mitigate these issues by relying on resources at
the edge of the network. On one hand, this proves to be effective in reducing the
quantity of data sent across the network but, on the other, it creates a scattered
environment. Optimally assigning computational tasks to available resources be-
comes the challenge. Starting from a design-time scenario, we developed a novel
runtime framework based on Reinforcement Learning: FIGARO (reinForcement
learnInG mAnagement acRoss computing cOntinua). The primary objective was
to create a fast and reliable decision tool that could cope with the major challenges
involved in a runtime scenario (e.g., variability of the incoming load, network per-
formance variation, changes in end-users’ behaviour). To decrease the learning
time of the Agent, design-time knowledge has been exploited throughout its train-
ing process. The experimental results highlight how we achieved a speed-up of
about 10 times with respect to our baseline software. Our Static Reinforcement
Learning (RL) Agent proved its capability to match the performance of the bench-
mark under various environment assumptions. Moving to the Dynamic RL Agent,
featuring continuous learning, the performance overcomes the benchmark even in
a short episode when the response times follow a different distribution with respect
to the one used during the preliminary offline training.

Key-words: Edge computing, Reinforcement Learning, Deep Q-Learning, Optimal allocation

1. Introduction

One of the main reasons behind the rise of the Cloud computing paradigm is the fact that it makes an ideally
unlimited computational and storage power accessible according to pay-to-go pricing models. The Cloud market
is seemingly experiencing a continuous growth and experts expect its size to reach 1600 USD billion by 2030
[1]. In the last few years, an accelerated migration towards mobile computing and Internet of Things (IoT)
is designing a new framework, where high benefits can be achieved by exploiting resources at the edge of the
network. Consequently, Edge computing was proposed as an alternative to Cloud.

1

The Edge computing paradigm brings storage, computation and network services near the end devices through
the so called fog nodes, which can be switches, cameras, routers, computers and servers, linked through a net-
work connection [2].
Thanks to this approach, Edge computing is characterised by low latency, processing power closer to the user
and real time interactions, overcoming Cloud computing limitations [3].
Nonetheless, it should be noticed that Edge resources have usually less computing capacity than the Cloud,
and can become a bottleneck in the computation. Hence, if an application requires computational power which
is not available at the Edge nodes, there should still be the option to connect to the Cloud data centers [2], if
latency requirements and network connections allow so.

Therefore, the Computing Continuum paradigm is the best approach: latency-sensitive tasks can be distributed
among Edge nodes while compute-intensive tasks are offloaded to the Cloud layers.
Since in this scenario the computation is distributed among devices with highly heterogeneous capacities and
connectivity, efficient resource allocation and component placement algorithms are crucial to orchestrate at best
the physical resources of the Computing Continuum, minimising the expected costs while meeting constraints
related to, e.g., Quality of Service (QoS) response times.

In many literature proposals (e.g., [4]), the problem of component placement and resource selection for Artifi-
cial Intelligence (AI) applications in the Computing Continuum is faced at design time, dealing with different
application requirements.
The tool that is presented in [4], which has been used as starting point in this work and is referred to in the
following as Space4AI-D, is based on a randomised greedy algorithm whose objective is to determine the optimal
allocation of the application components on the candidate resources of minimum cost, providing performance
guarantees across heterogeneous resources of different types (e.g., Edge devices, Cloud GPU-based Virtual Ma-
chines (VMs) and Function as a Service solutions (Faas)).
Despite the very good quality of Space4AI-D solutions, in practical applications the workload (e.g., requests per
second to be processed) expected at design-time is often subject to fluctuations due, for example, to variations
in the generated data volumes. For this reason, the initially designed placement may become unfeasible or
oversized depending on the input workload, so it has to be continuously monitored and adapted online.

Starting from the Space4AI-D design-time tool, we developed an integrated framework that handles the run-
time. A runtime tool must provide a feasible reconfiguration in few seconds at most, due to the online nature
of the running applications. Most of them are not indeed long tasks, for example, they may revolve around an
evaluation of a Neural Network. Therefore, runtime tools must be designed to make appropriate cost-reactivity
trade-offs while tuning the solver algorithms, as well as implemented in a very efficient way to reduce the exe-
cution time.

To tackle the runtime problem, we opted for the great possibilities offered by Reinforcement Learning (RL).
Other works, such as [5], have already highlighted how a RL methodology can successfully adapt overtime to
variations in, e.g., the workload model, by relying only on observations extracted from the environment. There-
fore, a RL-based approach can deal with shifting aspects of AI applications (e.g., variability of the incoming
load, network performance variation) and of the the end-users’ behaviour. It is also more flexible with respect
to resource management methods based on analytical models and an optimisation problem.
The downside of RL is the huge time needed by the Agent to learn an effective policy. During the training the
Agent needs to explore all the actions it may select and some undesired behaviours may happen, e.g., leading
to violations of the QoS constraints.
The main contribution of this work is to develop FIGARO, a runtime framework where the power of the RL-
based methods is merged with the knowledge (i.e., the solutions) of a design-time approach, aiming to get the
best out of both worlds.
The FIGARO environment embeds:
• A Simulator to compute the response times without imposing the strict hypotheses that an analytical

approach would. An example is the possibility to vary the distribution used to draw service times.
• A RL-based Agent able to take fast decisions. It capitalises on both an initial share of knowledge coming

from a design-time analysis and every information acquired while running.
• A design-time tool, Space4AI-D, serving multiple purposes. It is used to compute the response times and

to represent the analytical counterpart of the Simulator, allowing a comparison. But it can also behave as
the Agent deployed inside the environment, becoming a reference solution to assess the RL-based Agent.

We would like to stress further how the knowledge of Space4AI-D is employed to get an initial approximated
policy, that is, a policy mimicking the Space4AI-D design-time behaviour. On one hand, this improves the
learning procedure of the Agent and, on the other hand, it prevents a great deal of QoS violations because the
Agent immediately deploys an effective policy instead of starting with a completely random one.

2

Figure 1 shows the cumulative violation rate obtained by two Static RL-based Agents. The first (red line)
has just started its preliminary training whilst the second (black line) has already achieved a performance
comparable to Space4AI-D by resembling its behaviour. The latter accomplishes better performance in terms
of both number and severity of QoS violations. Fully exploiting the design-time knowledge leads to an already
effective initial policy for the RL Agent.

0 250 500 750 1000 1250 1500 1750 2000
Number of calls to the Simulator

0

20

40

60

80

100

Cu
m

ul
at

iv
e

vi
ol

at
io

n
ra

te
 [%

]
Cumulative violation rate

 Static RL Agent
 (1050 training iterations)
 Mean violation: 0.021
 Static RL Agent
 (350 training iterations)
 Mean violation: 1.382

Figure 1: Comparison of the cumulative rate of QoS violations of the two Static RL Agents trained
with different number of training iterations - one-component system.

This thesis is organised as follows. Related works are discussed in Section 2. Section 3 introduces the basic
application and resources models. Section 4 formulates the optimisation problem, while Section 5 focuses on
the RL part. Section 6 presents the FIGARO framework. Experimental results are discussed in Section 7, and
final conclusions are drawn in Section 8.

2. Related work

Edge computing, Cloud computing, Fog computing and the possible applications of Reinforcement Learning are
recurrent themes in the latest research trends.
The authors in [6] tackle an offloading problem via an Unmanned Aerial Vehicles (UAV) used as Edge server. A
helper UAV is deployed to both assist the legitimised UAV and to contrast an eavesdropper UAV (i.e., switching
between a relay mode and a jammer mode). The choice of this mode, as well as other parameters such as the
velocity of the helper UAV, is determined by adopting a Deep Deterministic Policy Gradient based method, a
type of Deep Reinforcement Learning suited for continuous control problems.
Offloading a task to the nearest Mobile Edge Computing (MEC) server may not be the optimal solution due
to its limited computing resources. Jointly optimising the offloading decision, namely where to offload a task,
and resource management, namely how much computing resource in an MEC server is allocated to a task, is
critical. In [7] the authors model this optimisation problem as Markov Decision Process (MDP) and propose
the Deep reinforcement lEarning based offloading deCision and rEsource managemeNT (DECENT) algorithm,
which leverages the Advantage Actor Critic method to optimise the offloading decision and computing resource
allocation for each arriving task in real-time such that the cumulative weighted response time can be min-
imised.
The theme of workflow offloading continues in [8] to face the problems related to the massive network traf-
fic and calculation workload among end-users and Cloud platforms. The authors address the robustness of
the offloading policies from a multi-objective perspective by proposing a Meta-Reinforcement-Learning-based

3

0 200 400 600 800 1000
Step

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Ti

m
e

[s
]

Agent execution times (Simulator: Omnet, Distribution: Exponential)

Constrained Space4AI-D
Static RL Agent

(a) One-component system.

0 200 400 600 800 1000
Step

1

2

3

4

5

Ti
m

e
[s

]

Agent execution times (Simulator: Omnet, Distribution: Exponential)

Constrained Space4AI-D
Static RL Agent

(b) Two-components system.

Figure 28: Execution times of the Agents - exponential service times.

0 200 400 600 800 1000
Step

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
[s

]

Agent execution times (Simulator: Omnet, Distribution: Log-normal)

Constrained Space4AI-D
Static RL Agent

(a) One-component system.

0 200 400 600 800 1000
Step

1

2

3

4

Ti
m

e
[s

]
Agent execution times (Simulator: Omnet, Distribution: Log-normal)

Constrained Space4AI-D
Static RL Agent

(b) Two-components system.

Figure 29: Execution times of the Agents - log-normal service times.

8. Conclusions

The importance of Edge computing has dramatically risen in the recent period. As showed in the Section 2, an
active community of researchers works to find new algorithms to fully harness the potential of Edge computing.
The main goal of such works is the optimisation of resource usage to achieve better performance and reduce
the costs, the time spent and the consumed energy. Our work was aligned with this effort. Starting from a
design-time framework, we moved towards a runtime framework in order to achieve adaptability with respect to
changes in the environment and to abandon some restrictive assumptions, such as exponentially distributed ser-
vice times. The proposed solution is a Reinforcement Learning (RL) Agent implementing the Deep Q-Learning
algorithm. A key element is exploiting the design-time knowledge to speed up the learning process of the RL and
to deploy an already effective policy from the very beginning. We achieved a reduction of computational times,
constant regardless of the system dimensionality, of about 10 times with respect to the benchmark (Space4AI-D).
Shifting the environment assumptions, the Static RL Agent showed behaviours similar to Space4AI-D. Moving
to the Dynamic RL Agent, featuring continuous learning, the performance overcomes the benchmark even in a
short episode when the response times follow a different distribution with respect to the one used during the
preliminary training.

45

References

[1] Precedence Research. Cloud computing market size to hit us $ 1,614.1 billion by
2030. URL "https://www.globenewswire.com/en/news-release/2022/05/13/2443081/0/en/
Cloud-ComputingMarket-Size-to-Hit-US-1-614-1-Billion-by-2030.html".

[2] Sabireen H. and Neelanarayanan V. A Review on Fog Computing: Architecture, Fog with IoT, Algorithms
and Research Challenges. ICT Express, 7(2):162–176, 2021. ISSN 2405-9595. doi: https://doi.org/10.1016/
j.icte.2021.05.004. URL https://www.sciencedirect.com/science/article/pii/S2405959521000606.

[3] Michaela Iorga, Larry Feldman, Robert Barton, Michael Martin, Nedim Goren, and Charif Mahmoudi.
Fog Computing Conceptual Model, 2018-03-14 2018.

[4] Hamta Sedghani, Federica Filippini, and Danilo Ardagna. A Random Greedy based Design Time Tool
for AI Applications Component Placement and Resource Selection in Computing Continua. In 2021 IEEE
International Conference on Edge Computing (EDGE), pages 32–40, 2021. doi: 10.1109/EDGE53862.2021.
00014.

[5] Enda Barrett, Enda Howley, and Jim Duggan. Applying reinforcement learning towards automating re-
source allocation and application scalability in the cloud. Concurrency and Computation: Practice and Ex-
perience, 25(12):1656–1674, 2013. doi: https://doi.org/10.1002/cpe.2864. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/cpe.2864.

[6] Seonghoon Yoo, Seongah Jeong, and Joonhyuk Kang. Hybrid uav-enabled secure offloading via deep
reinforcement learning, 2022. URL https://arxiv.org/abs/2208.07550.

[7] Zeinab Akhavan, Mona Esmaeili, Babak Badnava, Mohammad Yousefi, Xiang Sun, Michael Devetsikiotis,
and Payman Zarkesh-Ha. Deep reinforcement learning for online latency aware workload offloading in
mobile edge computing, 2022. URL https://arxiv.org/abs/2209.05191.

[8] Hongyun Liu, Ruyue Xin, Peng Chen, and Zhiming Zhao. Multi-objective robust workflow offloading in
edge-to-cloud continuum. In 2022 IEEE 15th International Conference on Cloud Computing (CLOUD),
pages 469–478, 2022. doi: 10.1109/CLOUD55607.2022.00070.

[9] Somayeh Yeganeh, Amin Babazadeh Sangar, and Sadoon Azizi. A novel q-learning-based hybrid algorithm
for the optimal offloading and scheduling in mobile edge computing environments. Journal of Network
and Computer Applications, 214:103617, 2023. ISSN 1084-8045. doi: https://doi.org/10.1016/j.jnca.2023.
103617. URL https://www.sciencedirect.com/science/article/pii/S108480452300036X.

[10] Hongyun Liu, Peng Chen, and Zhiming Zhao. Towards a robust meta-reinforcement learning-based schedul-
ing framework for time critical tasks in cloud environments. In 2021 IEEE 14th International Conference
on Cloud Computing (CLOUD), pages 637–647, 2021. doi: 10.1109/CLOUD53861.2021.00082.

[11] Yihong Li, Xiaoxi Zhang, Tianyu Zeng, Jingpu Duan, Chuan Wu, Di Wu, and Xu Chen. Task placement and
resource allocation for edge machine learning: A gnn-based multi-agent reinforcement learning paradigm,
2023. URL https://arxiv.org/abs/2302.00571.

[12] Malathy Navaneetha Krishnan and Revathi Thiyagarajan. Multi-objective task scheduling in fog computing
using improved gaining sharing knowledge based algorithm. Concurrency and Computation: Practice and
Experience, 34(24):e7227, 2022. doi: https://doi.org/10.1002/cpe.7227. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/cpe.7227.

[13] Yaohua Sun, Jianmin Chen, Zeyu Wang, Mugen Peng, and Shiwen Mao. Enabling mobile virtual reality
with open 5g, fog computing and reinforcement learning. IEEE Network, pages 1–18, 2022. doi: 10.1109/
MNET.010.2100481.

[14] Bao Trinh and Gabriel-Miro Muntean. A deep reinforcement learning-based offloading scheme for multi-
access edge computing-supported extended reality systems. IEEE Transactions on Vehicular Technology,
pages 1–10, 2022. doi: 10.1109/TVT.2022.3207692.

[15] Nam H. Chu, Diep N. Nguyen, Dinh Thai Hoang, Khoa T. Phan, Eryk Dutkiewicz, Dusit Niyato, and Tao
Shu. Dynamic resource allocation for metaverse applications with deep reinforcement learning, 2023.

46

"https://www.globenewswire.com/en/news-release/2022/05/13/2443081/0/en/Cloud-ComputingMarket-Size-to-Hit-US-1-614-1-Billion-by-2030.html"
"https://www.globenewswire.com/en/news-release/2022/05/13/2443081/0/en/Cloud-ComputingMarket-Size-to-Hit-US-1-614-1-Billion-by-2030.html"
https://www.sciencedirect.com/science/article/pii/S2405959521000606
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.2864
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.2864
https://arxiv.org/abs/2208.07550
https://arxiv.org/abs/2209.05191
https://www.sciencedirect.com/science/article/pii/S108480452300036X
https://arxiv.org/abs/2302.00571
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7227
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7227

[16] Xin Peng, Zhengke Han, Wenwu Xie, Chao Yu, Peng Zhu, Jian Xiao, and Jinxia Yang. Deep reinforcement
learning for shared offloading strategy in vehicle edge computing. IEEE Systems Journal, pages 1–12, 2022.
doi: 10.1109/JSYST.2022.3190926.

[17] Philipp Raith, Thomas Rausch, Schahram Dustdar, Fabiana Rossi, Valeria Cardellini, and Rajiv Ranjan.
Mobility-aware serverless function adaptations across the edge-cloud continuum.

[18] Guangyao Zhou, Ruiming Wen, Wenhong Tian, and Rajkumar Buyya. Deep reinforcement learning-
based algorithms selectors for the resource scheduling in hierarchical cloud computing. Journal of Network
and Computer Applications, 208:103520, 2022. ISSN 1084-8045. doi: https://doi.org/10.1016/j.jnca.2022.
103520. URL https://www.sciencedirect.com/science/article/pii/S1084804522001618.

[19] Wenting Wei, Huaxi Gu, Kun Wang, Jianjia Li, Xuan Zhang, and Ning Wang. Multi-dimensional resource
allocation in distributed data centers using deep reinforcement learning. IEEE Transactions on Network
and Service Management, pages 1–1, 2022. doi: 10.1109/TNSM.2022.3213575.

[20] Fei Xu, Jianian Xu, Jiabin Chen, Li Chen, Ruitao Shang, Zhi Zhou, and Fangming Liu. igniter:
Interference-aware gpu resource provisioning for predictable dnn inference in the cloud, 2022. URL
https://arxiv.org/abs/2211.01713.

[21] Z. Chen, B. Zhu, and C. Zhou. Container cluster placement in edge computing based on reinforcement
learning incorporating graph convolutional networks scheme. Digital Communications and Networks, 2023.
doi: https://doi.org/10.1016/j.dcan.2023.02.012.

[22] Martin Straesser, Simon Eismann, Jóakim von Kistowski, André Bauer, and Samuel Kounev. Autoscaler
evaluation and configuration: A practitioner’s guideline. In Proceedings of the 2023 ACM/SPEC Inter-
national Conference on Performance Engineering, ICPE ’23, New York, NY, USA, 2023. Association for
Computing Machinery. In print.

[23] Danilo Ardagna and Barbara Pernici. Adaptive Service Composition in Flexible Processes. IEEE Trans-
actions on Software Engineering, 33(6):369–384, 2007. doi: 10.1109/TSE.2007.1011.

[24] Lizheng Jiang, Yunman Pei, and Jiantao Zhao. Overview Of Serverless Architecture Research. Journal
of Physics: Conference Series, 1453(1):012119, jan 2020. doi: 10.1088/1742-6596/1453/1/012119. URL
https://dx.doi.org/10.1088/1742-6596/1453/1/012119.

[25] Amazon. AWS Lambda: Run code without thinking about servers or clusters, 2022. URL https://aws.
amazon.com/lambda/.

[26] Amazon. AWS Lambda Pricing, 2022. URL https://aws.amazon.com/lambda/pricing/.

[27] Microsoft. Azure Functions pricing, 2022. URL https://azure.microsoft.com/en-us/pricing/
details/functions/.

[28] Amazon. AWS Step Function pricing, 2022. URL https://aws.amazon.com/step-functions/pricing/.

[29] Microsoft. Azure Logic Apps, 2022. URL https://azure.microsoft.com/en-us/products/
logic-apps/.

[30] Sebastián Risco, Germán Moltó, Diana M Naranjo, and Ignacio Blanquer. Serverless Workflows for Con-
tainerised Applications in the Cloud Continuum. Journal of Grid Computing, 19, 2021.

[31] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. ISBN 0262039249.

[32] Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, Pablo Castro, Ethan Holly, Sam Fishman,
Ke Wang, Ekaterina Gonina, Neal Wu, Efi Kokiopoulou, Luciano Sbaiz, Jamie Smith, Gábor Bartók,
Jesse Berent, Chris Harris, Vincent Vanhoucke, and Eugene Brevdo. TF-Agents: A library for re-
inforcement learning in tensorflow. https://github.com/tensorflow/agents, 2018. URL https:
//github.com/tensorflow/agents. [Online; accessed 25-June-2019].

[33] TensorFlow. TensorFlow-Agents documentation, 2023. URL https://www.tensorflow.org/agents.

[34] TensorFlow. TensorFlow repository, 2023. URL https://github.com/tensorflow/tensorflow.

47

https://www.sciencedirect.com/science/article/pii/S1084804522001618
https://arxiv.org/abs/2211.01713
https://dx.doi.org/10.1088/1742-6596/1453/1/012119
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/pricing/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://aws.amazon.com/step-functions/pricing/
https://azure.microsoft.com/en-us/products/logic-apps/
https://azure.microsoft.com/en-us/products/logic-apps/
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://www.tensorflow.org/agents
https://github.com/tensorflow/tensorflow

[35] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow:: Large-scale machine learning on heterogeneous systems, 2015. URL
https://www.tensorflow.org/. Software available from tensorflow.org.

[36] Bergstra J. Yamins D. Cox D. D. Making a Science of Model Search: Hyperparameter Optimization in
Hundreds of Dimensions for Vision Architectures. TProc. of the 30th International Conference on Machine
Learning , 2013. URL https://hyperopt.github.io/hyperopt/.

[37] Bergstra J. Yamins D. Cox D. D. Making a Science of Model Search: Hyperparameter Optimization in
Hundreds of Dimensions for Vision Architectures. TProc. of the 30th International Conference on Machine
Learning (ICML 2013), 2013. URL https://github.com/hyperopt/hyperopt.

[38] OpenSim Ltd. Omnet++ documentation, 2023. URL "https://omnetpp.org".

[39] OpenSim Ltd. Omnet++ repository, 2023. URL "https://github.com/omnetpp/omnetpp".

Abstract in lingua italiana

La crescente importanza di applicazioni basate sull’Intelligenza Artificiale ha condotto a dei ripensamenti
riguardo al paradigma Cloud Computing, specialmente a causa delle quantità sempre maggiori di dati che
devono essere scambiati e che portano a costi e ritardi legati alla comunicazione. Edge Computing è una pro-
posta recente che si prefigge di mitigare alcuni di questi problemi tramite l’utilizzo di tutte le risorse disponibili,
anche quelle al margine della rete. Se da un lato è capace di ridurre la quantità di dati trasmessi, dall’altro
conduce alla frammentazione del sistema. Pertanto, assegnare in modo ottimale i vari processi alle risorse
disponibili risulta cruciale. Partendo da alcune analisi effettuate in fase di definizione del problema (EN: at
design-time), abbiamo lavorato per giungere a una visione del problema durante la sua esecuzione (EN: at run-
time) creando una struttura decisionale basata sull’Apprendimento per Rinforzo (EN: Reinforcement Learning)
che chiamiamo FIGARO: reinForcement learnInG mAnagement acRoss computing cOntinua. L’ obiettivo prin-
cipale è stato creare uno strumento veloce e affidabile che potesse affrontare le sfide che emergono durante le fasi
di esecuzione (ad esempio, carichi di lavoro variabili, modifiche nel comportamento degli utenti). Per ridurre il
tempo di apprendimento dell’Agente, abbiamo sfruttato la conoscenza derivante da metodi concepiti in fase di
definizione durante la procedura di addestramento. I risultati sperimentali mostrano come il nostro Agente ab-
bia dei tempi di esecuzione circa 10 volte inferiori rispetto al programma utilizzato come riferimento. L’Agente
Statico riesce ad avere prestazioni paragonabili a quelle del riferimento. Utilizzando l’Agente Dinamico, che
continua l’apprendimento durante il suo impiego, il rendimento supera quello del modello confrontato, nonos-
tante la lunghezza limitata dell’episodio e la differente distribuzione dei tempi di risposta impiegata durante
l’addestramento iniziale.

Parole chiave: Edge computing, Apprendimento per Rinforzo, Deep Q-Learning, Allo-
cazione ottimale

Acknowledgements

We would like to thank our supervisor, Danilo Ardagna, for his guidance and patience throughout our experience
together. Super special thanks to Federica Filippini who helped us during every stage of our work, including
also the tricky technical parts. We are also grateful to Hamta Sedghani for her help with Space4AI-D.
We thank Riccardo Lancellotti, professor at the Università degli Studi di Modena e Reggio Emilia, for his
invaluable support when dealing with the Simulator. We guess we tested his patience enough.
Finally, we want to thank our university mates that shared with us triumphs and downfalls by studying together
in the mythical Interfacoltà.

48

https://www.tensorflow.org/
https://hyperopt.github.io/hyperopt/
https://github.com/hyperopt/hyperopt
"https://omnetpp.org"
"https://github.com/omnetpp/omnetpp"

	Introduction
	Related work
	Application and resource models
	Application components model
	Quality of Service requirements
	Resources
	Network
	Resources costs

	Optimisation problem
	Decision variables and allocation constraints
	Local and global QoS constraints
	Costs
	Formulation

	Reinforcement Learning
	State space S
	Action space A
	Cost function c(s,a,s')

	FIGARO
	Offline training
	Online policy evaluation & training
	Runtime loop

	Experimental results
	Realistic workload generation
	Offline training results
	Impact of the training horizon on policy quality
	Response times comparison
	Agent performance
	Computational times comparison

	Conclusions

