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Abstract: Deep Learning methods are currently used to address a variety of com-
plex tasks. This is partially motivated by the fact that these models are now
trained on GPUs, expanding the range of problems that can be solved in a rea-
sonable computating time. This has caused the demand for high-performance
GPU-based cloud servers to increase dramatically, making it necessary for Cloud
Service Providers (CSPs) to manage that demand effectively. In this thesis, we
optimize the scheduling of Deep Learning training jobs from the perspective of a
CSP running a data center, efficiently selecting resources for the execution of each
job in order to minimize average power consumption. We modeled this problem
through a Mixed Integer Linear Programming (MILP) formulation, and we de-
veloped a stochastic heuristic that, exploiting the probability distribution of early
termination, determines how to vary the resource assignment during the execution
of each job to minimize the expected value of the energy cost while still fulfilling
deadlines. We set up an extensive experimental campaign to perform simulations
and test the quality of the solution identified by our method. The results show
that our heuristic guarantees significantly better results than other methods in the
literature, with a percentage energy cost reduction of about 38-40% on average.
We also prove the applicability of our method in real-world situations, as obtaining
optimal schedules for systems of up to 100 nodes and 400 concurrent jobs requires
less than 60 seconds. Finally we evaluated the effectiveness of GPU sharing, that
is, running multiple jobs in a single GPU. The results demonstrate that, depending
on the workload and GPU memory, this possibility can reduce the percentage cost
by 17-29% on average.
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1. Introduction

Nowadays, different kinds of problems are tackled with Deep Learning (DL) algorithms. Partially, this is because
these models are now trained using GPUs instead of CPUs, achieving an execution speedup of about 5-40x [1],
extending the set of problems that can be solved in a reasonable computating time.
The problem that arise in this context is that high-performance GPU-based servers are cost-prohibitive (about
200k USD for high-end systems like NVIDIA DGX A100 [2]). This has caused the demand for cloud servers
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of this type to increase dramatically, making it necessary for Cloud Service Providers (CSPs) to manage that
demand effectively.
The goal of this work is to optimize the scheduling of Deep Learning training jobs from the perspective of a
CSP running a data center, efficiently selecting resources for the execution of each job in order to minimize
power consumption costs.
To the best of our knowledge, methods to optimize this problem available in the literature are (i) simple job
scheduling mechanisms such as Earliest-Deadline-First (EDF or First-in-First-Out (see [3]), (ii) more elaborate
heuristics such as Random Greedy (RG) and Path Relinking, presented in [4, 5]. A limitation of these approaches
is that they consider only the worst-case execution time in searching for an optimal schedule. Instead, our idea
to address the problem is to exploit stochastic information about the training of DL jobs to minimize the
expected value of energy costs.
The reference scenario is a CSP composed of several machines, each with different numbers and types of GPUs.
Multiple Artificial Intelligence (AI) training jobs are submitted over time, and there is no information about
future arrivals. Each job has different characteristics and is associated with an execution deadline and a priority
for fulfilling it.
While optimizing energy consumption, the priority is to execute jobs by the due date; for this purpose, we
model the due date violation with a tardiness cost, depending on the priority. To enforce its importance for the
global optimization problem, this is set to be an order of magnitude higher than the energy cost.
A certain number of GPUs is assigned to each job; in particular, they can be executed on multiple nodes
exclusively (multi-node jobs) or on a single node, shared with other jobs. Moreover, we considered GPU
sharing, i.e., the possibility of executing multiple jobs on a single GPU (mini-jobs). Indeed, nowadays the
GPUs available on the market are increasingly performing and have a large amount of memory, which enables
multiple jobs to be trained simultaneously, saving in power consumption and resources although increasing the
execution time due to overhead communication.
To properly select the resources to be allocated, it is necessary to estimate the time needed for the training
depending on the chosen configuration. In addition to determining the worst-case execution time to reach the
maximum number of epochs, we infer a probability distribution for early termination. From these two pieces of
information, we define the execution time as a stochastic variable.
We formalize this problem through a Mixed Integer Linear Programming formulation. Due to the stochasticity
of the parameters and and the large numbers of variables and constraints, this is too demanding to be solved
directly.
Therefore, we develop a heuristic (starting from the work in [6]) that, using the probability distribution of the
number of epochs required for execution, determines a dynamic schedule (i.e., it changes the resources) for
each job such that we minimize the expected value of the energy cost while still fulfilling the deadline in the
worst-case.
The idea behind this heuristic is to start with a low-power configuration and then gradually increase the assigned
resources. This way, we reduce costs when a job ends early, but we can still recover otherwise.
We implement such heuristic and perform simulations with real-world data to validate its efficiency. We compare
the results obtained with our stochastic method against state-of-the-art approaches. We show that with our
approach, a significant increase in performance is achieved by obtaining an average percentage reduction of the
energy cost of about 38− 40% with respect to RG and EDF.
We also run simulations to evaluate the effectiveness of GPU sharing, comparing the power consumption cost
with a scenario where GPUs are devoted to single jobs. The results show how the possibility of co-locating
multiple jobs on single GPUs yields a reduction in the average percentage cost in a range of 17−29%, depending
on the workload and GPUs memory.
Finally, we demonstrate the applicability of our method in real-world situations, as we obtain optimal schedules
for systems of up to 100 nodes and 400 concurrent jobs in less than 60 seconds.
This thesis is structured as follows:
In Section 2, we present the state-of-the-art for the problem we want to tackle, and in Section 3 we describe in
details the work from the literature that is the basis of our stochastic approach.
In Section 4, we state the optimal job scheduling problem we address in this work, and in Section 5 we provide a
mathematical formulation for it. In Section 6, we explain the stochastic heuristic developed to solve our model.
In Section 7, we present the experimental setup for the simulations, and in Section 8 we show the obtained
results. Finally, in Appendix A we give an overview of the code developed to implement the heuristic and
explain how to use it to run the simulations.

2. Related Work

There are many challenges in managing GPU-accelerated clusters efficiently. It is necessary to define effective
solutions for job scheduling and resource allocation to maximize performance and minimize power consumption
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point of our problem. For systems of 100 nodes and 1000 jobs, this value is about 400 in the high-rate scenario,
200 for the exponential inter-arrival scenario, and 100 for the low-rate scenario.
Thus, we solved a single instance of the problem with our heuristic by generating a number of jobs equal to 4N ,
2N , or N , where N is the number of nodes, submitting them all at the initial instant.
The results are shown in Figure 14.

(a) Exponential inter-arrival (b) High rate (c) Low rate

Figure 14: Average execution times needed for STS to solve a single instance of the problem

From the plots, we observe that the average execution time of a single instance has a linear dependency on the
number of jobs to be trained concurrently, and is always under a minute, even for the larger systems.
The average execution time of the exponential and high cases is almost comparable, while, as expected, it is
significantly reduced for the low case.
We separated the execution time of the non-linear solver of the stochastic model Ipopt from the rest of the
heuristic (preprocessing, assignment, and postprocessing); in practice, about 90% of the total execution time is
due to Ipopt.
This result was expected given the complexity of the stochastic model; to speed up the heuristic, it would be
necessary to solve it more effectively by tackling it with a problem-based method.
In any case, the results obtained using Ipopt are already satisfying, being the resolution times negligible compared
to the overall training times of the Deep Learning jobs considered for the simulations.

9. Conclusion

In this thesis, we presented a stochastic approach to model and tackle the optimal scheduling problem for AI
training jobs in GPU-based systems. We provided a mathematical formulation of the problem by defining the
execution time as a stochastic variable in Sections 4 and 5. Furthermore, we developed a stochastic heuristic
that allocates jobs to the available resources to minimize the average energy cost while meeting the imposed
deadlines as described in Section 6.
We set up an extensive experimental campaign and performed simulations to test the quality of our method by
comparing it with other literature approaches.
The results, presented in Section 8, confirm that our heuristic guarantees significantly better results than the
existing ones, with a percentage reduction in energy cost of about 38− 40%.
This improvement is undoubted because stochastic information about the end of job training is used in our
approach, which is not considered by the other methods.
However, we have shown, by proving the inefficiency of the reference heuristics when modified with the average
execution time, that to address the problem stochastically it is necessary to develop a complete method that
also considers the worst-case scenario, like ours does.
In order to assess the benefit of GPU sharing, we also ran simulations and compared the power consumption
cost when this was or was not allowed. The results demonstrate that, depending on the workload and GPU
memory, the possibility of co-locating multiple jobs on a single GPU can reduce the cost percentage between
17% and 29%.
Finally, by showing that solving instances of the problem with up to 100 nodes and 400 concurrent jobs requires
less than 60 seconds, we demonstrated that our method could be applied efficiently in real-world scenarios.
One possible improvement of the proposed heuristic is to solve the stochastic model described in Section 3 more
efficiently as described in [6]. It has to be solved at every rescheduling point for every job and every GPU
type. Since it is crucial for the nature of the problem to obtain results in a short time, we set a low maximum
number of iterations for the interior point method. This often causes the global optimum not to be found, so
determining a specific solution for our nonlinear model could improve the method performance.
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