A Hybrid Machine Learning Approach
for Big Data Performance Evaluation

Supervisor:
Prof. Danilo Ardagna — Politecnico di Milano

Co-Supervisors:
Dr. Eugenio Gianniti — Politecnico di Milano
Dr. Marco Lattuada — Politecnico di Milano

Master of Science Thesis of:
Vahid Heidari
Matriculation ID 850973

April 2018
Contents

Contents

List of Figures ix

List of Tables xi

1 Introduction 5

2 State of the Art 9

2.1 Technology 9

2.1.1 MapReduce and Hadoop 9

2.1.1.1 HDFS 11

2.1.1.2 MapReduce Applications 13

2.1.1.3 Hadoop YARN 14

2.1.1.4 Hadoop 3.x 16

2.1.2 Spark 16

2.1.2.1 Spark Components 17

2.1.2.2 Spark Runtime Architecture 19

2.2 Machine Learning Methods 20

2.2.1 Linear Regression 21

2.2.2 Support Vector Regression 22

2.2.3 Decision Tree Regression 24

2.2.4 Random Forest 27

2.3 Hybrid Machine Learning for Performance Modeling 28

3 Hybrid Machine Learning Approach for Big Data Performance Evaluation 33

3.1 Problem Statement 34

3.2 Proposed Approach 36

3.2.1 Analytical models 36

3.2.2 Machine Learning Model 38
List of Figures

2.1 Hadoop MapReduce v1 architecture 10
2.2 HDFS architecture .. 11
2.3 Hadoop transformation with Yet Another Resource Negotiator (YARN) and Tez introduction 14
2.4 Unified stack of Spark components 17
2.5 The components of a distributed Spark application 19
2.6 Decision tree example .. 25
2.7 Main phases of the Bootstrapping technique 30
3.1 Spark job execution DAG ... 37
3.2 directed acyclic graph and order preserving sequential execution 37
3.3 Initial ML model .. 39
3.4 ML model after merging operational data 40
3.5 Model selection step 2 .. 43
3.6 Model selection step3 ... 43
3.7 Last selected ML model .. 44
3.8 Error changes in iteration steps 45
3.9 Error quartiles in finding optimized thresholds 49
3.10 Error quartiles in optimal thresholds 50
4.1 HML use cases diagram .. 52
4.2 Hybrid machine learning class diagram 56
4.3 Optimization sequence diagram 57
4.4 Compare sequence diagram 58
4.5 HML sequence diagram ... 60
4.6 Activity Diagram .. 62
5.1 Q26 query ... 65
5.2 Q40 query ... 65
5.3 Q52 query ... 67
5.4 Comparison of formula-based approximation and the mean values of real data in Q26 69
5.5 MAPE of response time on Microsoft Azure for Q26 72
5.6 MAPE of response time on Microsoft Azure for Q52 75
5.7 Extrapolation capability using Random Forest Regression on Microsoft Azure and analytical data from approximate formula 77
5.8 Interpolation capability using Random Forest Regression on Microsoft Azure and analytical data from approximate formula 78
5.9 Effect of fewer analytical data on MAPE of response time on Microsoft Azure for Q26 .. 81
5.10 MAPE of response time on Microsoft Azure for Q52 using fewer analytical data ... 83
5.11 Comparison of simulator based approximation and the mean values of real data in Q26 .. 84
5.12 The MAPE of response time on Microsoft Azure for Q26 87
5.13 The MAPE of response time on Microsoft Azure for Q52 89
5.14 Extrapolation capability using Linear Regression on Microsoft Azure and analytical data from dagSim simulator 90
5.15 Interpolation capability using Linear Regression on Microsoft Azure and analytical data from dagSim simulator 92
5.16 The MAPE of response time on Microsoft Azure for Q26 94
5.17 The MAPE of response time on Microsoft Azure for Q52 with fewer simulated analytical data ... 96
5.18 Comparison of formula-based approximation and the mean values of real data in CINECA for Q26 98
5.19 The MAPE of response time on CINECA for Q26 103
5.20 The MAPE of response time on CINECA for Q40 105
5.21 Extrapolation capability using Support Vector Regression on CINECA and analytical data from approximate formula 106
5.22 Interpolation capability using Support Vector Regression (SVR) on CINECA and analytical data from approximate formula 107
5.23 The MAPE of response time on CINECA for Q26 using fewer formula based analytical data ... 110
5.24 The MAPE of response time on CINECA for Q40 using fewer formula based analytical data ... 111
5.25 Comparison of formula-based approximation and the mean values of real data in CINECA for Q26 and Q40 113
5.26 The MAPE of response time on CINECA for Q26 115
5.27 The MAPE of response time on CINECA for Q40 117
5.28 Extrapolation capability using Decision Tree Regression on CINECA and analytical data from QN simulator 118
5.29 Interpolation capability using Decision Tree Regression (DT) on CINECA and analytical data from QN simulator 119
List of Tables

2.1 Kernel functions ... 24

4.1 Run HML with specific thresholds and seed 52
4.2 Optimize thresholds use case 53
4.3 Compare different algorithms 54

5.1 Optimal thresholds for Q26 in Microsoft Azure - formula based analytical data ... 70
5.2 Average MAPE of response time on Microsoft Azure for Q26 - formula based analytical data 71
5.3 Number of iterations of external loop in Q26 73
5.4 Average MAPE of response time on Microsoft Azure for Q52 - formula based analytical data 74
5.5 Number of iterations of external loop in Q52 74
5.6 Number of external loop iterations in each step of the extrapolation 77
5.7 Number of external loop iterations in each step of the interpolation 79
5.8 Optimized thresholds for Q26 in Microsoft Azure with fewer formula based analytical data 79
5.9 MAPE values change in Q26 with fewer formula based analytical data ... 80
5.10 Number of iterations in Q26 when fewer formula based analytical data is used ... 81
5.11 Mape value changes in Q52 when using fewer formula based analytical data ... 82
5.12 Iteration changes in Q52 when using fewer formula based analytical data ... 83
5.13 Optimal thresholds in Microsoft Azure - simulator based analytical data ... 85
5.14 Average MAPE of response time on Microsoft Azure for Q26 - simulator based analytical data .. 86
5.15 Number of iterations of external loop in Q26 - Microsoft Azure - Simulator data .. 86
5.16 Average MAPE of response time on Microsoft Azure for Q52 - simulator based analytical data 88
5.17 Number of iterations of external loop in Q52 - Microsoft Azure - Simulator data .. 88
5.18 Number of iterations of external loop in each extrapolation step for Microsoft Azure .. 91
5.19 Number of iterations of external loop in all steps of interpolation .. 91
5.20 Optimal thresholds for Q26 when using analytical data from dagSim and fewer data ... 93
5.21 MAPE values change in Q26 with fewer dagSim based analytical data .. 93
5.22 Iteration changes in Q26 with fewer dagSim based analytical data ... 93
5.23 MAPE value changes in query Q52 with fewer simulated analytical data ... 95
5.24 Iteration changes in query Q52 with fewer simulated analytical data .. 96
5.25 Optimized thresholds for Spark jobs on CINECA for query Q26 - formula based analytical data 99
5.26 Average MAPE of response time on CINECA for Q26 - formula based analytical data .. 99
5.27 Number of iterations of external loop in Q26 - CINECA - formula data ... 100
5.28 Average MAPE of response time on CINECA for Q40 - formula based analytical data .. 100
5.29 Number of iterations of external loop in Q40 - CINECA - formula data ... 101
5.30 Optimized thresholds for Spark jobs on CINECA for query Q26 - investigating AM data quality 101
5.31 Average MAPE of response time on CINECA for Q26 - CINECA and core 90 ... 102
5.32 Number of iterations of external loop in Q26 - core 90 in Test set ... 102
5.33 Optimized thresholds for Q40 and core 90 in Test set ... 104
5.34 MAPE values for query Q40 when core 90 is in Test set ... 104
5.35 Iterations of external loop for Q40 and core 90 in Test set ... 104
5.36 Number of iterations of external loop in extrapolation scenario for CINECA ... 106
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.37</td>
<td>Number of iterations of external loop in interpolation scenario of CINECA using formula based analytical data</td>
<td>108</td>
</tr>
<tr>
<td>5.38</td>
<td>Threshold values when using fewer formula based analytical data in CINECA</td>
<td>108</td>
</tr>
<tr>
<td>5.39</td>
<td>MAPE values change in Q26 with fewer formula based analytical data</td>
<td>109</td>
</tr>
<tr>
<td>5.40</td>
<td>Iteration changes in Q26 with fewer formula based analytical data</td>
<td>109</td>
</tr>
<tr>
<td>5.41</td>
<td>MAPE value changes in query Q40 with fewer simulated analytical data</td>
<td>112</td>
</tr>
<tr>
<td>5.42</td>
<td>Iteration changes in query Q40 with fewer simulated analytical data</td>
<td>112</td>
</tr>
<tr>
<td>5.43</td>
<td>Optimized thresholds for Spark jobs on CINECA Q26 - simulator based analytical data</td>
<td>114</td>
</tr>
<tr>
<td>5.44</td>
<td>Average MAPE of response time on CINECA for Q26 - simulator based analytical data</td>
<td>114</td>
</tr>
<tr>
<td>5.45</td>
<td>Number of iterations of external loop in Q26 - CINECA - simulator data</td>
<td>115</td>
</tr>
<tr>
<td>5.46</td>
<td>Average MAPE of response time on CINECA for Q40 - simulator based analytical data</td>
<td>116</td>
</tr>
<tr>
<td>5.47</td>
<td>Number of iterations of external loop in Q40 - CINECA - simulator data</td>
<td>116</td>
</tr>
<tr>
<td>5.48</td>
<td>Number of iteration in extrapolation scenario</td>
<td>118</td>
</tr>
<tr>
<td>5.49</td>
<td>Number of iterations in interpolation scenario - CINECA with analytical data from dagSim</td>
<td>119</td>
</tr>
<tr>
<td>5.50</td>
<td>Threshold values when using fewer formula based analytical data in CINECA</td>
<td>120</td>
</tr>
<tr>
<td>5.51</td>
<td>MAPE values change in Q26 with fewer formula based analytical data</td>
<td>120</td>
</tr>
<tr>
<td>5.52</td>
<td>Iteration changes in Q26 with fewer formula based analytical data</td>
<td>121</td>
</tr>
<tr>
<td>5.53</td>
<td>MAPE value changes in query Q40 with fewer simulated analytical data</td>
<td>122</td>
</tr>
<tr>
<td>5.54</td>
<td>Iteration changes in query Q40 with fewer simulated analytical data</td>
<td>123</td>
</tr>
</tbody>
</table>
Abstract

Nowadays running big data applications on clouds are growing rapidly and have become critical for almost every industry. Because of that, it is often important to predict with fair confidence the execution time of submitted applications, for instance when service level agreements (SLAs) are established with end-users. In other words, users may want to determine how jobs execution time changes when the available cloud resources (in terms of, e.g., virtual machines type and their number) change. However, running experiments in real cloud environments is generally expensive and time consuming. Therefore, exploiting a reasonably accurate model for performance evaluation and prediction of cloud applications has a great importance. Performance prediction models are extremely useful to aid development and deployment of big data applications; either for design time decisions or run time system reconfiguration.

Map Reduce framework became one of the most popular platforms for data analytics. Apache Spark extends the MapReduce model and using Resilient distributed Datasets (RDDs) and Directed Acyclic Graphs (DAGs) empowers Spark to be a fast and general-purpose big data computing platform.

One approach for performance prediction is to develop white box analytical models based on DAG simulators or approximation formulas for predicting performance metrics. Another approach is machine learning based techniques which embody the black box, and infer performance models based on the relations among the input and output variables of a system that are observed during an initial training phase.

This thesis, validates and optimizes a hybrid (also known as gray box) approach for performance prediction of big data applications running on clouds, which exploits both analytical modeling and machine learning techniques and it is able to achieve a good accuracy without too many time consuming and costly experiments on a real setup.
Attualmente, le applicazioni big data su cloud stanno avanzando rapidamente, diventando di cruciale importanza per quasi tutti i settori industriali. Per questa ragione, risulta spesso essenziale prevedere con una certa accuratezza i tempi di esecuzione delle applicazioni lanciate, per esempio quando gli SLA (Service Level Agreement) vengono stabiliti con gli end-users. In altre parole, gli utenti vorrebbero poter determinare quanto varia il tempo di esecuzione quando le risorse disponibili su cloud variano (in termini per esempio di tipologia e numero di macchine virtuali). Tuttavia, eseguire esperimenti in real cloud environment è di solito costoso e richiede un elevato consumo di tempo. Di conseguenza, l’utilizzo di modelli ragionevolmente accurati per la valutazione e la predizione delle prestazioni delle applicazioni cloud è di fondamentale importanza. I modelli di predizione delle prestazioni sono estremamente utili per incoraggiare lo sviluppo e la diffusione di applicazioni big data e anche per le decisioni sul tempo di progettazione o per la riconfigurazione del runtime system. Il framework Map Reduce è diventato una delle piattaforme più utilizzate per l’analisi dei dati. Apache Spark estende il modello MapReduce, l’utilizzo di RDD (Resilient distributed Datasets) e di DAG (Directed Acyclic Graphs) e consente a Spark di essere una piattaforma di elaborazione di big data rapida e generale.

Un possibile approccio per la predizione delle prestazioni consiste nello sviluppo di modelli analitici white box basati su simulatori DAG o su formule di approssimazione per la predizione delle metrics performance. Un altro approccio è rappresentato dal machine learning che incorpora la black box e deduce modelli di prestazione basati sulle relazioni tra variabili di input ed output di un sistema che vengono osservate in una fase di training iniziale. Questa tesi convalida ed ottimizza un approccio ibrido (noto anche come gray box) per la predizione delle performance delle applicazioni big data che girano su cloud, che impiega sia modelli analitici che tecniche di machine learning ed è in grado di raggiungere una buona accuratezza senza impiegare troppo tempo o effettuare costosi esperimenti su un setup reale.
Introduction

Big Data is revolutionizing all aspects of our lives ranging from enterprises to consumers, from science to government. [26]

In this context, the MapReduce (MR) framework became the most popular platform [11] for data analytics because of its simplicity, generality, and maturity [48]. Apache Spark, on the other hand, provides a user friendly programming interface to decrease coding efforts and provide better performance in a majority of the cases with problems related to big data. Apache Spark started as a research project at UC Berkeley in the AMPLab, with the goal to design a programming model that supports a much wider class of applications than MapReduce, while maintaining its automatic fault tolerance.

Spark offers an abstraction called Resilient distributed Datasets (RDDs) [46] a distributed memory abstraction that lets programmers perform in memory computations on large clusters in a fault-tolerant manner. In practice, Spark can easily obtain a 10x speedup over Hadoop on specific scenarios [46] and it is the most promising framework that will probably support the execution of big data applications for the next 5–10 years [14].

Clouds are cost-effective platforms to support big data systems, as resources (e.g., nodes) can be allocated and deallocated on demand, in response to the applications requirements and QoS needs.

In this context, one of the main challenges [30, 44] is that the execution time of big data applications is generally unknown in advance. Because of this, performance analysis is usually done empirically through experimentation, requiring a costly setup [21].

In addition, big data systems are becoming a central force in society, thus requiring the development of intelligent systems, which provide QoS
guarantees to their users. Performance prediction models are extremely useful to aid development and deployment of big data applications; either for design time decisions or run time system reconfiguration. Design time models can help, e.g., to determine the appropriate size of a cluster or to predict the budget required to run Hadoop/Spark in public clouds. Such models can be used also at run time, allowing a dynamic adjustment of the system configuration [4, 34], e.g., to cope with workload fluctuations or to reduce energy costs.

One approach for performance prediction is to develop white box analytical models (AMs) based on DAG simulators, queueing networks (QNs), Petri nets (PNs) and so on for predicting performance metrics. However, analytically modeling big data applications is very challenging, since this requires a deep knowledge of the system behavior. Moreover, in a cloud context performance prediction is even more complex, since applications execution time may also vary as a consequence of resource contention and performance degradation introduced by the underlying virtualization layer [8].

To ensure AM tractability in such complex systems, AM-based performance models typically rely on simplifying assumptions that reduce their accuracy. On the other hand, black box machine learnings (MLs) deal with the study and construction of algorithms that can learn from data and make predictions on it without a priori knowledge about the internals of the target system. In recent years, a growing number of successful researches were done to explore the possibility of using ML techniques to predict performance of complex computer systems [24, 28, 45]. Therefore, ML can also be exploited for predicting the execution time of Spark jobs. To be able to predict accurately, ML models should be built during a training phase with a sufficient amount of experimental data from different workloads, using different parameters and configurations. However, running several experiments in cloud environments would be costly and time consuming. Though ML often provides good accuracy in regions for which it is well trained, it shows poor precision in regions for which none or very few samples are known.

Hybrid machine learning, which can be considered as a gray box modeling technique [6, 16, 25, 38], is a new approach for performance prediction that tries to achieve the best of the AM and ML worlds by mixing the two. Such models can be exploited to support design-time decision-making during the development and deployment phases of big data applications. These models can then be also kept alive at run-time to conduct the dynamic adjustment of the system configuration [34].

Focus of this thesis is to provide a design time combined AM/ML model to estimate big data applications execution time built on Spark, running
in cloud clusters. At first, AMs are used to initially model the response time of the big data application and initiate some synthetic samples. This analytical data is used to train an initial ML model. During an iterative and incremental process, new data from the operational system is fed into the ML model to build a more accurate performance predictor. In addition, some intuitions are exploited to provide more accurate predictions while consuming less data from the operational systems, which, due to resource contention, might be affected by noise.

The accuracy of the models is evaluated on real systems by performing experiments based on the TPC-DS industry benchmark for business intelligence data warehouse applications. The Italian supercomputing center, CINECA, and the Microsoft Azure HDInsight \(^1\) data platform has been considered as target deployment.

The proposed hybrid approach (HML) is compared against two ML-based techniques, and a graybox technique proposed by Didona et al. \([18]\) in terms of different metrics defined to indicate prediction accuracy.

Using different regression techniques and hyper parameter optimization, HML outperforms baseline machine learning techniques, and provides better extrapolation and interpolation capabilities. HML also surpasses analytical models which usually have acceptable extrapolation, by achieving more accurate results.

In comparison to iterative machine learning (IML), beside surpassing in extrapolation and interpolation capabilities, HML significantly reduces the number of training samples gathered from the operational system. Comparing to other hybrid machine learning approaches, i.e., Didona et al.’s work \([17]\), based on “No Free Lunch” theorem we cannot declare there is a clear winner in terms of accuracy or number of data samples required to build a model, but HML demonstrates to be more robust to the choice of the underling ML model and easier to be fine-tuned.

This thesis is organized as follows:

Chapter 2 outlines the state of the art. Chapter 3 presents the hybrid machine learning approach for performance evaluation of big data applications. In the Chapter 4 implementation library of the proposed approach is described. Experimental results are presented in Chapter 5. And finally conclusions are drawn in Chapter 6.

\(^1\)https://azure.microsoft.com/en-us/services/hdinsight/
Conclusions and Future Work

This thesis, proposed, validated and optimized a novel hybrid machine learning algorithm (HML), which is able to use analytical model (AM) and machine learning (ML) in synergy to model and predict the execution time of jobs running on the most widely used big data frameworks such as Spark.

With respect to state of the art work, HML is particularly effective to predict the performance of big data applications when shared physical environments characterized by high resource contention are considered.

The proposed approach can use different regression techniques and performs hyper parameter optimization in all of the used ML techniques. The results from this thesis implies that HML outperforms baseline machine learning techniques, providing better extrapolation and interpolation capabilities.

HML provides a powerful methodology for a better approximation of Big Data job execution time on cloud environment, these approximations are more accurate than analytical models which usually have acceptable extrapolation capabilities.

In comparison to iterative machine learning (IML), findings of this thesis indicate that HML reduces significantly the number of training samples to be gathered from the operational system. In most of the experiments, HML gathered only one sample while IML was reaching the maximum number of the iterations.

Comparing to other hybrid machine learning approaches, i.e., Didona et al.’s work [17], we cannot declare there is a clear winner in terms of accuracy or number of data samples required to build a model, but our approach
demonstrated to be more robust to the choice of the underlying ML model and easier to be fine-tuned.

Building upon the outcomes of this work, it is possible to investigate further open issues and relevant research questions. Different hyperparameter optimization methods such as random search can be used instead of grid search to make the procedure faster. More research can explore the effects of using different weights for training the model in HML. Future works can also concentrate on the effect of using neural network algorithms instead of the used ML methods in HML, to investigate how prediction accuracy is affected.
Bibliography

backmatter/references.bib