
POLITECNICO DI MILANO
Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Matematica

Game Theory Models for MapReduce:
Joint Admission Control and

Capacity Allocation

Relatore:
Prof. Danilo Ardagna — Politecnico di Milano

Correlatori:
Prof. Mauro Passacantando — Università di Pisa
Prof.ssa Michela Meo — Politecnico di Torino
Dott. Michele Ciavotta — Politecnico di Milano

Tesi Magistrale di:
Eugenio Gianniti

Matricola 799220

Anno Accademico 2014-2015

Contents

Contents v

List of Figures vii

List of Tables viii

1 Introduction 5

2 State of the Art 7
2.1 Cloud Computing . 7

2.1.1 Basic Concepts . 8
2.1.2 Main Characteristics 9
2.1.3 Architecture . 12

2.1.3.1 Service Models 13
2.1.3.2 Deployment Models 15

2.2 MapReduce and Hadoop 17
2.2.1 MapReduce Applications 18
2.2.2 HDFS . 19
2.2.3 Hadoop YARN . 21
2.2.4 From FIFO to Capacity and Fair Schedulers 23
2.2.5 MapReduce Job Performance Models 24

2.3 Game Theory Applications 28
2.3.1 Game Theory for Cloud Computing 28
2.3.2 Game Theory for MapReduce 33

3 A Distributed Approach for the Joint Admission Control and
Capacity Allocation of Hadoop Clusters 35
3.1 Problem Statement and Design Assumptions 36
3.2 Mathematical Programming Formulation 38

3.2.1 Analysis . 42
3.2.2 Closed Form . 45

v

Contents

3.3 Game Theoretic Formulation 47
3.3.1 Application Masters 47
3.3.2 Resource Manager 49
3.3.3 Analysis . 52
3.3.4 Iterative Approach 56

3.3.4.1 Auxiliary Problem 56
3.3.4.2 Best Reply Algorithm 58

3.4 Integer Solution Heuristic 59

4 Experimental Results 63
4.1 Tools . 64

4.1.1 AMPL . 64
4.1.2 KNITRO . 65
4.1.3 YARN SLS . 66

4.2 Design of Experiments . 67
4.3 Preliminary Analysis . 70

4.3.1 Increasing Concurrency Level 71
4.3.2 Decreasing Capacity 73
4.3.3 Decreasing Deadlines 75
4.3.4 Further Considerations 79

4.4 Scalability Analysis . 81
4.5 Stopping Criterion Tolerance Analysis 89
4.6 Validation with YARN SLS 93

5 Conclusions and Future Work 97

Acronyms 101

Bibliography 103

vi

List of Figures

2.1 Cloud Computing architecture, [93] 12
2.2 Cloud service models . 14
2.3 Cloud deployment models . 16
2.4 Hadoop MapReduce v1 architecture 18
2.5 HDFS architecture . 20
2.6 Hadoop YARN architecture . 22

3.1 Data flow . 60

4.1 Costs, increasing concurrency level, r̃i = ri − r lowi , 10 AMs . . . 71
4.2 Costs, increasing concurrency level, r̃i = ri − r lowi , 100 AMs . . 72
4.3 Costs, increasing concurrency level, r̃i = ri − r lowi , 1,000 AMs . 72
4.4 Costs, increasing concurrency level, r̃i = ri , 10 AMs 73
4.5 Costs, decreasing capacity, r̃i = ri − r lowi , 10 AMs 74
4.6 Costs, decreasing capacity, r̃i = ri − r lowi , 100 AMs 74
4.7 Costs, decreasing capacity, r̃i = ri − r lowi , 1,000 AMs 75
4.8 Costs, decreasing capacity, r̃i = ri , 10 AMs 76
4.9 Costs, decreasing capacity, r̃i = ri , 100 AMs 76
4.10 Costs, decreasing capacity, r̃i = ri , 1,000 AMs 77
4.11 Costs, decreasing deadlines, r̃i = ri − r lowi , 10 AMs 77
4.12 Costs, decreasing deadlines, r̃i = ri − r lowi , 100 AMs 78
4.13 Costs, decreasing deadlines, r̃i = ri − r lowi , 1,000 AMs 78
4.14 Costs, decreasing deadlines, r̃i = ri − r lowi , 100 AMs 79
4.15 Concurrency, decreasing capacity, r̃i = ri − r lowi , 100 AMs . . . 80
4.16 Concurrency, decreasing capacity, r̃i = ri − r lowi , 100 AMs . . . 81
4.17 Costs, scalability analysis, r̃i = ri − r lowi 82
4.18 Costs, scalability analysis, r̃i = ri 82
4.19 Iterations before convergence, scalability analysis, r̃i = ri − r lowi 83
4.20 Iterations before convergence, scalability analysis, r̃i = ri . . . 84
4.21 Execution time, scalability analysis, r̃i = ri − r lowi 84

vii

4.22 Execution time, scalability analysis, r̃i = ri 89
4.23 Relative error with respect to centralized costs, distributed

approach, r̃i = ri − r lowi . 90
4.24 Relative error with respect to centralized costs, closed form

approach, r̃i = ri − r lowi . 91
4.25 Number of iterations before convergence, distributed approach,

r̃i = ri − r lowi . 91
4.26 Number of iterations before convergence, closed form approach,

r̃i = ri − r lowi . 92
4.27 Number of iterations before convergence, distributed approach,

r̃i = ri . 92
4.28 Number of iterations before convergence, closed form approach,

r̃i = ri . 93

List of Tables

3.1 Centralized Model Parameters 39
3.2 Centralized Decision Variables 39
3.3 Distributed Model Parameters 48
3.4 Distributed Decision Variables 48

4.1 Parameters Uniform Distributions 68
4.2 Derived Parameters . 69
4.3 Execution Time, Distributed Approach, r̃i = ri − r lowi 85
4.4 Execution Time, Closed Form Approach, r̃i = ri − r lowi 86
4.5 Execution Time, Distributed Approach, r̃i = ri 87
4.6 Execution Time, Closed Form Approach, r̃i = ri 88
4.7 Results of the SLS Validation 94

viii

Abstract

Nowadays many companies have at their disposal large amounts of raw,
unstructured data. With the term Big Data we refer to the analysis of
huge datasets, allowing the extraction of information of utmost impor-
tance for business purposes. Among the enabling technologies, a central
place is held by the MapReduce framework, in particular its open source
implementation, Apache Hadoop. For cost effectiveness considerations, a
common approach entails sharing server clusters among multiple user
classes. Such a common infrastructure should provide every user with a
fair share of computational resources, ensuring that Service Level Agree-
ments (SLAs) are met and avoiding wastes.

In this work we consider mathematical programming problems that
model the optimal allocation of computational resources in a cluster, in
order to develop new capacity allocation techniques, allowing for bet-
ter performance in shared datacenters. Our goal is the reduction of
power consumption, while respecting the deadlines stated in the SLAs
and avoiding penalties associated with job rejections. At the core of this
approach there is the development of a distributed algorithm, based on
Game Theory models and techniques, and enabling run-time capacity
allocation, hence the need to split the original problem of resource allo-
cation in MapReduce environments into two classes of problems, one for
the central Resource Manager and the other for each Application Master.
Further improvements could be gained taking into account also the issue
of data locality, which can greatly impact performance in the execution
of MapReduce jobs.

1

Sommario

Oggi molte aziende hanno a disposizione grandi quantità di dati molto
spesso non strutturati. Con il termine Big Data si fa riferimento all’ana-
lisi di grandi moli di dati, permettendo l’estrazione di informazioni di
massima importanza per gli obiettivi aziendali. Tra le tecnologie abili-
tanti, il framework MapReduce occupa un ruolo centrale, in particolare
con la sua implementazione open source, Apache Hadoop. Per ragioni eco-
nomiche, una prassi comune prevede la condivisione di cluster di server
tra più classi di utenti. Tale infrastruttura comune dovrebbe fornire ad
ogni utente una giusta quota di risorse di calcolo, garantendo che i con-
tratti di Service Level Agreements (SLAs) siano soddisfatti ed evitando
sprechi, come l’utilizzo inefficiente delle risorse.

In questo lavoro di tesi si propongono problemi di programmazione
matematica per modellare l’allocazione ottimale delle risorse computa-
zionali in un cluster, al fine di sviluppare nuove tecniche di allocazione
delle risorse, consentendo una migliore performance in datacenter con-
divisi. L’obiettivo è la riduzione del consumo di energia, rispettando i
termini indicati negli SLAs ed evitando penali associate ad obiettivi di
prestazioni non raggiunti. Al centro di questo approccio si pone lo svi-
luppo di un algoritmo distribuito, basato su modelli e tecniche di Teoria
dei Giochi, che consenta l’allocazione della capacità di calcolo a run-time.
Da qui sorge la necessità di suddividere il problema originale di alloca-
zione delle risorse in ambiente MapReduce in due classi di problemi, uno
per il Resource Manager centrale e l’altra per ogni Application Master.
Ulteriori lavori futuri faranno rifermiento ad estensioni possibili tenen-
do conto anche della data locality, che può influire notevolmente sulle
prestazioni nell’esecuzione dei job MapReduce.

3

CHAPTER 1
Introduction

A large number of enterprises currently commits to the extraction of in-
formation from huge datasets as part of their core business activities.
Applications range from fraud detection to one-to-one marketing, en-
compassing business analytics and support to decision making in both
private and public sectors. In order to cope with the unprecedented
amount of data that many companies need to process in a timely way,
new technologies are increasingly adopted by the industry, following the
Big Data paradigm. Among such technologies, Apache Hadoop [11] is
already widespread and statistics suggest further increase in its future
adoption. IDC estimates that, by 2020, nearly 40% of Big Data analyses
will be supported by the public Cloud [29], while Hadoop is expected to
touch half of the data worldwide by 2015 [43].

Apache Hadoop is an open source project, backed by the Apache
Foundation, developing a software suite that enables the elaboration of
vast amounts of data on clusters of commodity hardware. To accomplish
this goal, Hadoop features a distributed file system, a resource negotia-
tor, and interfaces to the MapReduce framework. The latter allows for
highly scalable parallel computation, automatically ensuring paralleliza-
tion and distribution, fault-tolerance, reliability, and monitoring. The
framework can offer all these interesting capabilities as it requires de-
velopers to write applications following the MapReduce programming
model, which consists of a fixed workflow, with a map function read-
ing unstructured input data and providing intermediate results to the
reduce function, which aggregates them and outputs processed data.

Despite the convenience of this approach and the widespread Hadoop
adoption within the Information Technology (IT) industry, still there are

5

1. Introduction

not tools that support developers and operators in common activities re-
lated to the capacity planning of MapReduce applications. This thesis
investigates the theoretical fundamentals needed to enable design space
exploration in the early phases of application development, as well as the
optimal management of cluster resources in private Clouds at run-time.
To do so, we adopt Game Theory techniques, which found successful ap-
plication in facing issues related to the Cloud computing paradigm, and
use them to provide a scalable solution to the joint admission control and
capacity allocation of multi-class Hadoop clusters.

This thesis is organized as follows. Chapter 2 discusses the state of
the art, giving an overview of the technologies under study, in particu-
lar Cloud computing and Hadoop MapReduce, and exploring the usage
of game-theoretic techniques and methods when dealing with related is-
sues, as described in technical literature. Next, Chapter 3 shows how we
developed models to solve the joint capacity allocation and admission
control problem, interleaving the rigor of mathematical proofs with the
intuition of mechanisms underlying the application under study. Then
we analyze and validate our results in Chapter 4, where we carry out
a thorough exploration of the characteristics of the proposed models.
The solution methods are also validated comparing the predicted per-
formance with simulations run exploiting the official simulator offered
within the Hadoop suite. In the end, Chapter 5 wraps up this work and
draws conclusions on the outcomes. Furthermore, it points out relevant
issues that remain open and will be the focus of future work.

6

CHAPTER 5
Conclusions and Future Work

Throughout this thesis we investigated MapReduce applications run-
ning on Hadoop clusters. After exploring the technical aspects related
to Cloud computing and Apache Hadoop, as well as the application of
Game Theory techniques to similar problems, we focused on the devel-
opment of models that could be exploited for solving the joint admission
control and capacity allocation problem at run-time and in a scalable
way. Then, these solution methods were validated through empirical
analyses and their results compared with simulations run on the official
simulator provided by Hadoop.

We have shown evidence to support the use of Algorithm 3.3.1 and
the formulæ of Proposition 3.3.3 as a scalable and accurate distributed
solution method for the joint admission control and capacity allocation
problem. Furthermore, we compared the results of two different formu-
lations of problem (3.14), using two possible virtual gain terms: r̃i = ri
and r̃i = ri − r lowi . The former considers the contribute of the whole set
of VMs to the virtual gain, whilst the latter does not take into account
the virtual payments associated to the portion of resources guarantee-
ing minimal operation. In lay terms, the former is closer to the intuitive
“revenues minus expenses” expression, whilst the latter comes from the
observation that r lowi VMs must be assigned to AM i independently of
the strategy adopted by the RM, hence their contribution should not in-
fluence the outcomes of the optimization process. Multiple times the for-
mulation adopting r̃i = ri−r lowi proved better, with respect to both robust-
ness and accuracy. Indeed, in Section 4.3 the alternative missed the opti-
mal solution in several experiments. Moreover, in Sections 4.4 and 4.5 we
showed a loss of efficiency when executing the formulation with r̃i = ri .

97

5. Conclusions and Future Work

All in all, we can conclude that Algorithm 3.3.1 with r̃i = ri − r lowi is the
best approach to the solution of the problem of interest, both with re-
spect to times of execution and efficiency, and considering the accuracy
with which the optimal solution is caught. Furthermore, we showed that
this solution method requires execution times below the second, with
limited network traffic, then Algorithm 3.3.1 can support, in practice,
both design phases and the run-time management of clusters.

Building upon the outcomes of this work, it is possible to investi-
gate further open issues and relevant research questions. An aspect that
might strongly affect performance of MapReduce jobs in Hadoop clusters
is data locality. When map tasks are started, the framework takes care of
automatically providing slots with the slice of data they have to process.
Now, if a slot can be scheduled on the same node where HDFS stored
one of the blocks it should process, then computation will start right
away. If this is not the case, instead, the network time required to trans-
fer data between nodes will add to the job completion time. Similarly,
reduce slots should be scheduled in order to minimize the data transfer
needed to move intermediate values associated to the same key to the
correct node. This behavior can be modeled adding specific parameters
and constraints, thus allowing for results more adherent to actual cluster
performance, since I/O is one of the factors that greatly affect it.

A project that is attracting increasing attention in the industry is
Apache Tez [13]. It can be seen as the natural evolution of Hadoop,
where workflows are not fixed anymore. When several data sources need
to be accessed and combined, the MapReduce paradigm forces to use
clumsy sequences of jobs, with the need to perform I/O on HDFS and
explicitly enforce synchronization barriers after each step. On the other
hand, Apache Tez abstracts the dependency relationships among input,
output, and intermediate data with Directed Acyclic Graphs (DAGs). In
this way, the framework itself can manage computation, launching tasks
as needed and automatically ensuring that all the required intermediate
data for each step is available when it starts. Moreover, this approach al-
lows to avoid unneeded I/O between a step and the following. Another
interesting development of this work is the extension of the model to
consider the mechanisms governing Apache Tez, hence adapt our joint
admission control and capacity allocation problem for the execution of
complex DAGs.

In the end, we should be aware that the approximate formulæ we use
to estimate performance might incur in large errors due to the inherent
difficulty and unpredictability of application performance. A system for
reliable performance prediction can greatly benefit from the coupling

98

with a local search method based on Petri Nets simulations. This tech-
nique allows to obtain very accurate predictions by simulating the whole
Hadoop system, clearly at the price of longer execution times. In this
vision, our models would provide a relevant initial guess for an iterative
procedure relying on this more precise technique, in order to find out
the optimal configuration or, conversely, certify that an application de-
sign will respect the constraints imposed on its execution due to business
considerations.

99

Acronyms

AM Application Master. vii, 1, 3, 22, 23, 36, 39, 45, 47–51, 55, 56, 58,
59, 66, 70–81, 83, 85–89, 97

API application programming interface. 13, 17

ARIA Automatic Resource Inference and Allocation. 25

CPU central processing unit. 7, 11, 22, 24, 26, 64, 68

DAG Directed Acyclic Graph. 98

FIFO First In, First Out. 22–24, 34

GFS Google File System. 17

GNEP Generalized Nash Equilibrium Problem. 33, 52, 56

GPU graphics processing unit. 24

HDFS Hadoop Distributed File System. vii, 17–21, 98

I/O Input/Output. 26, 98

IaaS Infrastructure as a Service. 13–15, 31–33

ICT Information and Communication Technology. 7, 28, 36

IT Information Technology. 5, 8, 9, 30, 67

JN Journal Node. 21

KKT Karush-Kuhn-Tucker. 42, 52, 57, 65

NDFS Nutch Distributed File System. 19

101

Acronyms

NIST National Institute of Standards and Technologies. 10

OS operating system. 19, 20

PaaS Platform as a Service. 13–15

PoA Price of Anarchy. 29, 30

POSIX Portable Operating System Interface. 20

QN queueing network. 27, 28

QoS Quality of Service. 9, 28, 30–33, 59

RAM random access memory. 64

RM Resource Manager. 1, 3, 22, 23, 36, 46–51, 56, 58, 59, 79, 80, 89, 97

SaaS Software as a Service. 13–15, 32, 33

SLA Service Level Agreement. 1, 3, 9, 13, 33, 35, 36, 38–40, 59, 60

SLS Scheduler Load Simulator. 66, 93, 94

VM virtual machine. 11, 13, 31, 32, 34, 36, 39, 40, 45–51, 59, 64, 67, 68,
71, 75, 97

YARN Yet Another Resource Negotiator. vii, 21, 22, 24, 66, 93, 94

102

Bibliography

[1] V. Abhishek, I. A. Kash, and P. Key. “Fixed and Market Pricing for
Cloud Services”. In: CoRR (2012). arXiv: 1201.5621 [cs.GT].

[2] M. Abundo, V. Di Valerio, V. Cardellini, and F. Presti. “Bidding
Strategies in QoS-Aware Cloud Systems Based on N-Armed Bandit
Problems”. In: NCCA. 2014.

[3] B. Addis, D. Ardagna, A. Capone, and G. Carello. “Energy-Aware
Joint Management of Networks and Cloud Infrastructures”. In: Com-
puter Networks 70 (Sept. 9, 2014).

[4] E. Altman, U. Ayesta, and B. Prabhu. “Load Balancing in Processor
Sharing Systems”. In: ValueTools. 2008.

[5] E. Altman, U. Ayesta, and B. J. Prabhu. “Optimal Load Balancing
in Processor Sharing Systems”. In: GameComm. 2008.

[6] E. Altman, T. Boulogne, R. El-Azouzi, T. Jiménez, and L. Wyn-
ter. “A Survey on Networking Games in Telecommunications”. In:
Comput. Oper. Res. 33.2 (2006), pp. 286–311.

[7] Amazon EC2 Pricing. url: http://aws.amazon.com/ec2/pricing/
(visited on 03/17/2015).

[8] Amazon Web Services. url: http://aws.amazon.com/ (visited on
03/17/2015).

[9] AMPL. url: http://www.ampl.com/ (visited on 03/17/2015).

[10] J. Anselmi and B. Gaujal. “Optimal Routing in Parallel, Non-Ob-
servable Queues and the Price of Anarchy Revisited”. In: ITC. 2010.

[11] Apache Hadoop. url: https://hadoop.apache.org (visited on
03/31/2015).

[12] Apache Rumen. url: http://hadoop.apache.org/docs/r1.2.1/
rumen.html (visited on 03/28/2015).

[13] Apache Tez. url: http://tez.apache.org (visited on 04/01/2015).

103

http://arxiv.org/abs/1201.5621
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/
http://www.ampl.com/
https://hadoop.apache.org
http://hadoop.apache.org/docs/r1.2.1/rumen.html
http://hadoop.apache.org/docs/r1.2.1/rumen.html
http://tez.apache.org

Bibliography

[14] D. Ardagna, S. Casolari, and B. Panicucci. “Flexible Distributed
Capacity Allocation and Load Redirect Algorithms for Cloud Sys-
tems”. In: CLOUD. 2011.

[15] D. Ardagna, B. Panicucci, and M. Passacantando. “A Game The-
oretic Formulation of the Service Provisioning Problem in Cloud
Systems”. In: WWW. 2011.

[16] D. Ardagna, B. Panicucci, and M. Passacantando. “Generalized Nash
Equilibria for the Service Provisioning Problem in Cloud Systems”.
In: IEEE Trans. on Services Computing PP.99 (2012).

[17] S. Bardhan and D. A. Menascé. “Queuing Network Models to Pre-
dict the Completion Time of the Map Phase of MapReduce Jobs”.
In: Proc. International Computer Measurement Group Conf. (Las Ve-
gas, NV). Dec. 2012.

[18] J. Barr. Host Your Web Site in the Cloud: Amazon Web Services Made
Easy. 1st ed. Sitepoint, 2010. isbn: 978-0980576832.

[19] J. Bredin, D. Kotz, D. Rus, R. Maheswaran, C. Imer, and T. Basar.
“Computational Markets to Regulate Mobile-Agent Systems”. In:
Autonomous Agents and Multi-Agent Systems (2003), pp. 235–263.

[20] I. Carrera, F. Scariot, C. Geyer, and P. Turin. An Example for Per-
formance Prediction for Map Reduce Applications in Cloud Environ-
ments.

[21] H.-L. Chen, J. R. Marden, and A. Wierman. “The Effect of Local
Scheduling in Load Balancing Designs”. In: SIGMETRICS Perform.
Eval. Rev. 36 (2 2008), pp. 110–112.

[22] G. Cook. How Clean is Your Cloud? Tech. rep. Greenpeace Interna-
tional, Apr. 2012. url: http://www.greenpeace.org/international/
Global/international/publications/climate/2012/iCoal/

HowCleanisYourCloud.pdf (visited on 04/02/2015).

[23] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Process-
ing on Large Clusters”. In: 6th Symposium on Operating Systems
Design and Implementation. 2004, pp. 137–149.

[24] V. Di Valerio, V. Cardellini, and F. Lo Presti. “Optimal Pricing and
Service Provisioning Strategies in Cloud Systems: A Stackelberg
Game Approach”. In: CLOUD. 2013.

[25] P. Dube, Z. Liu, L. Wynter, and C. H. Xia. “Competitive Equilib-
rium in E-Commerce: Pricing and Outsourcing”. In: Computers &
OR 34.12 (2007), pp. 3541–3559.

104

http://www.greenpeace.org/international/Global/international/publications/climate/2012/iCoal/HowCleanisYourCloud.pdf
http://www.greenpeace.org/international/Global/international/publications/climate/2012/iCoal/HowCleanisYourCloud.pdf
http://www.greenpeace.org/international/Global/international/publications/climate/2012/iCoal/HowCleanisYourCloud.pdf

Bibliography

[26] EEX. url: http://www.eex.com/en/ (visited on 11/26/2014).

[27] Y. Feng, B. Li, and B. Li. “Price Competition in an Oligopoly Mar-
ket with Multiple IaaS Cloud Providers”. In: IEEE Trans. on Com-
puters 63.1 (2014), pp. 59–73.

[28] Flexyscale. url: http://www.flexiscale.com/ (visited on 03/17/2015).

[29] J. Ganz and D. Reinsel. The Digital Universe in 2020: Big Data, Big-
ger Digital Shadows, and Biggest Growth in the Far East — United
States. Tech. rep. IDC, Feb. 2013. url: https://www.emc.com/
collateral/analyst-reports/idc-digital-universe-united-

states.pdf (visited on 04/07/2015).

[30] Gestore Mercati Energetici. url: http://www.mercatoelettrico.
org/En/Default.aspx (visited on 11/26/2014).

[31] GoGrid. url: http://www.gogrid.com/ (visited on 03/17/2015).

[32] Google App Engine. url: https : / / developers . google . com /
appengine/ (visited on 03/17/2015).

[33] Google Apps for Work. url: http://www.google.com/enterprise/
apps/business/ (visited on 03/17/2015).

[34] Google Compute Engine. url: https://cloud.google.com/products/
compute-engine (visited on 03/17/2015).

[35] Google Inc. url: http://www.google.com/about/company/ (vis-
ited on 03/17/2015).

[36] D. Grosu and A. Chronopoulos. “Noncooperative Load Balancing
in Distributed Systems”. In: Journ. Parallel Distrib. Comput. 65.9
(2005), pp. 1022–1034.

[37] Hadoop MapReduce Next Generation - Capacity Scheduler. url: http:
//hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-

yarn-site/CapacityScheduler.html (visited on 03/12/2015).

[38] M. M. Hassan, M. S. Hossain, A. M. J. Sarkar, and E.-N. Huh. “Co-
operative Game-based Distributed Resource Allocation in Hori-
zontal Dynamic Cloud Federation Platform”. In: Information Sys-
tems Frontiers (2012), pp. 1–20.

[39] M. M. Hassan, B. Song, and E.-N. Huh. “Distributed Resource Allo-
cation Games in Horizontal Dynamic Cloud Federation Platform”.
In: HPCC. 2011.

[40] M. Haviv and T. Roughgarden. “The Price of Anarchy in an Expo-
nential Multi-Server”. In: Oper. Res. Lett. 35.4 (2007), pp. 421–426.

105

http://www.eex.com/en/
http://www.flexiscale.com/
https://www.emc.com/collateral/analyst-reports/idc-digital-universe-united-states.pdf
https://www.emc.com/collateral/analyst-reports/idc-digital-universe-united-states.pdf
https://www.emc.com/collateral/analyst-reports/idc-digital-universe-united-states.pdf
http://www.mercatoelettrico.org/En/Default.aspx
http://www.mercatoelettrico.org/En/Default.aspx
http://www.gogrid.com/
https://developers.google.com/appengine/
https://developers.google.com/appengine/
http://www.google.com/enterprise/apps/business/
http://www.google.com/enterprise/apps/business/
https://cloud.google.com/products/compute-engine
https://cloud.google.com/products/compute-engine
http://www.google.com/about/company/
http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html

Bibliography

[41] H. Herodotou. Hadoop Performance Models. Tech. rep. Duke Uni-
versity, June 6, 2011. arXiv: 1106.0940 [cs.DC].

[42] M. Jebalia, A. Ben Letaïfa, M. Hamdi, and S. Tabbane. “A Compara-
tive Study on Game Theoretic Approaches for Resource Allocation
in Cloud Computing Architectures”. In: WETICE. 2013.

[43] K. Kambatla, G. Kollias, V. Kumar, and A. Grama. “Trends in Big
Data Analytics”. In: Journal of Parallel and Distributed Computing
74 (July 2014), pp. 2561–2573. doi: 10.1016/j.jpdc.2014.01.
003.

[44] KNITRO. url: http://www.ziena.com/knitro.htm (visited on
03/18/2015).

[45] J. Künsemöller and H. Karl. “A Game-Theoretic Approach to the
Financial Benefits of Infrastructure-as-a-Service”. In: Future Gen-
eration Computer Systems 41 (2014), pp. 44–52.

[46] KVM. url: http://www.linux-kvm.org/ (visited on 03/17/2015).

[47] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quan-
titative System Performance. Computer System Analysis Using Queue-
ing Network Models. Prentice-Hall, 1984. url: http://homes.cs.
washington.edu/~lazowska/qsp/ (visited on 04/07/2015).

[48] D.-R. Liang and S. K. Tripathi. “On Performance Prediction of Par-
allel Computations with Precedent Constraints”. In: IEEE Transac-
tions on Parallel and Distributed Systems 11.5 (May 2000), pp. 491–
508.

[49] X. Lin, Z. Meng, C. Xu, and M. Wang. “A Practical Performance
Model for Hadoop MapReduce”. In: International Conference on Clus-
ter Computing Workshops. IEEE. 2012. doi: 10.1109/ClusterW.
2012.24.

[50] Z. Lu, X. Wen, and Y. Sun. “A Game Theory Based Resource Shar-
ing Scheme in Cloud Computing Environment”. In: WICT. 2012.

[51] M. Malekimajd, A. M. Rizzi, D. Ardagna, M. Ciavotta, M. Passacan-
tando, and A. Movaghar. “Optimal Capacity Allocation for Execut-
ing MapReduce Jobs in Cloud Systems”. In: MICAS-SYNASC 2014
Workshops Proceedings. (Timisoara, Romania). Forthcoming.

[52] P. Mell and T. Grance. The NIST Definition of Cloud Computing.
Tech. rep. July 10, 2009. url: http://csrc.nist.gov/publications/
nistpubs/800-145/SP800-145.pdf (visited on 03/17/2015).

106

http://arxiv.org/abs/1106.0940
http://dx.doi.org/10.1016/j.jpdc.2014.01.003
http://dx.doi.org/10.1016/j.jpdc.2014.01.003
http://www.ziena.com/knitro.htm
http://www.linux-kvm.org/
http://homes.cs.washington.edu/~lazowska/qsp/
http://homes.cs.washington.edu/~lazowska/qsp/
http://dx.doi.org/10.1109/ClusterW.2012.24
http://dx.doi.org/10.1109/ClusterW.2012.24
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

Bibliography

[53] I. Menache, A. Ozdaglar, and N. Shimkin. “Socially Optimal Pric-
ing of Cloud Computing Resources”. In: VALUETOOLS. 2011.

[54] Microsoft Corporation. (Visited on 03/17/2015).

[55] Microsoft Office 365. url: http://office365.microsoft.com/
(visited on 03/17/2015).

[56] Microsoft Windows Azure. url: http://www.windowsazure.com/
(visited on 03/17/2015).

[57] Microsoft Windows Azure Virtual Machines. url: http://www.windowsazure.
com / en - us / home / features / virtual - machines/ (visited on
03/17/2015).

[58] Onlive. url: http://www.onlive.com/ (visited on 03/17/2015).

[59] R. Pal and P. Hui. “Economic Models for Cloud Service Markets:
Pricing and Capacity Planning”. In: Theoretical Computer Science
496 (2013), pp. 113–124.

[60] P. S. Pillai and S. Rao. “Resource Allocation in Cloud Computing
Using the Uncertainty Principle of Game Theory”. In: Systems Jour-
nal, IEEE PP.99 (2014), pp. 1–12.

[61] A. S. Prasad and S. Rao. “A Mechanism Design Approach to Re-
source Procurement in Cloud Computing”. In: Computers, IEEE
Transactions on 63.1 (2014), pp. 17–30.

[62] Rackspace. url: http://www.rackspace.com/ (visited on 03/17/2015).

[63] N. S. V. Rao, S. W. Poole, F. He, J. Zhuang, C. Y. T. Ma, and D. K. Y.
Yau. “Cloud Computing Infrastructure Robustness: A Game The-
ory Approach”. In: ICNC. 2012.

[64] H. Roh, C. Jung, W. Lee, and D.-Z. Du. “Resource Pricing Game in
Geo-distributed Clouds”. In: INFOCOM. 2013.

[65] T. Roughgarden. “The Price of Anarchy is Independent of the Net-
work Topology”. In: STOC. 2002.

[66] Salesforce. url: http://www.force.com/ (visited on 03/17/2015).

[67] N. Samaan. “A Novel Economic Sharing Model in a Federation of
Selfish Cloud Providers”. In: IEEE Trans. on Paral. and Distr. Syst.
25.1 (2014), pp. 12–21.

[68] T. Sandholm and K. Lai. “MapReduce Optimization Using Regu-
lated Dynamic Prioritization”. In: SIGMETRICS/Performance ’09.
(Seattle, WA, USA). June 15–19, 2009, pp. 299–310.

[69] SAP. url: http://www.sap.com/ (visited on 03/17/2015).

107

http://office365.microsoft.com/
http://www.windowsazure.com/
http://www.windowsazure.com/en-us/home/features/virtual-machines/
http://www.windowsazure.com/en-us/home/features/virtual-machines/
http://www.onlive.com/
http://www.rackspace.com/
http://www.force.com/
http://www.sap.com/

Bibliography

[70] G. Song, L. Yu, Z. Meng, and X. Lin. “A Game Theory Based Map-
Reduce Scheduling Algorithm”. In: Emerging Technologies for Infor-
mation Systems, Computing, and Management. Ed. by W. E. Wong
and T. Ma. Lecture Notes in Electrical Engineering 236. Springer
New York, 2013, pp. 287–296. doi: 10.1007/978-1-4614-7010-
6_33.

[71] Y. Song, M. Zafer, and K.-W. Lee. “Optimal Bidding in Spot In-
stance Market”. In: INFOCOM. 2012.

[72] SPEC. SPECpower_ssj2008. url: http://www.spec.org/power_
ssj2008/ (visited on 11/26/2014).

[73] SPEC. SPECvirt_sc2013. url: https : / / www . spec . org / virt _
sc2013/ (visited on 11/26/2014).

[74] F. Teng and F. Magoules. “A New Game Theoretical Resource Al-
location Algorithm for Cloud Computing”. In: GPC. 2010.

[75] C.-W. Tsai and Z. Tsai. “Bid-Proportional Auction for Resource Al-
location in Capacity-Constrained Clouds”. In: WAINA. 2012.

[76] A. Verma, L. Cherkasova, and R. H. Campbell. “ARIA: Automatic
Resource Inference and Allocation for MapReduce Environments”.
In: Proceedings of the Eighth International Conference on Autonomic
Computing. June 2011.

[77] A. Verma, L. Cherkasova, and R. H. Campbell. “Resource Provi-
sioning Framework for MapReduce Jobs with Performance Goals”.
In: Middleware. Vol. 7049. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2011, pp. 165–186. doi: 10.1007/978-3-642-
25821-3_9.

[78] E. Vianna, G. Comarela, T. Pontes, J. Almeida, V. Almeida, K. Wilkin-
son, H. Kumo, and U. Dayal. “Analytical Performance Models for
MapReduce Workloads”. In: Int J Parallel Prog 41 (2013), pp. 495–
525. doi: 10.1007/s10766-012-0227-4.

[79] E. Vianna, G. Comarela, T. Pontes, J. Almeida, V. Almeida, K. Wilkin-
son, H. Kumo, and U. Dayal. “Modeling the Performance of the
Hadoop Online Prototype”. In: 23rd International Symposium on
Computer Architecture and High Performance Computing. IEEE. 2011,
pp. 152–159. doi: 10.1109/SBAC-PAD.2011.24.

[80] V. Vinothina, R. Sridaran, and P. Ganapathi. “A Survey on Re-
source Allocation Strategies in Cloud Computing”. In: International
Journal of Advanced Computer Science and Applications 3.6 (2012).

108

http://dx.doi.org/10.1007/978-1-4614-7010-6_33
http://dx.doi.org/10.1007/978-1-4614-7010-6_33
http://www.spec.org/power_ssj2008/
http://www.spec.org/power_ssj2008/
https://www.spec.org/virt_sc2013/
https://www.spec.org/virt_sc2013/
http://dx.doi.org/10.1007/978-3-642-25821-3_9
http://dx.doi.org/10.1007/978-3-642-25821-3_9
http://dx.doi.org/10.1007/s10766-012-0227-4
http://dx.doi.org/10.1109/SBAC-PAD.2011.24

Bibliography

[81] VMware Inc. url: http://www.vmware.com/ (visited on 03/17/2015).

[82] J. Wan, D. Deng, and C. Jiang. “Non-Cooperative Gaming and Bid-
ding Model Based Resource Allocation in Virtual Machine Envi-
ronment”. In: IPDPS Workshops. 2012.

[83] W. Wang, B. Li, and B. Liang. “Towards Optimal Capacity Segmen-
tation with Hybrid Cloud Pricing”. In: ICDCS. 2012.

[84] Y. Wang, X. Lin, and M. Pedram. “A Game Theoretic Framework
of SLA-Based Resource Allocation for Competitive Cloud Service
Providers”. In: GreenTech. 2014.

[85] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong. “A Game-Theoretic
Method of Fair Resource Allocation for Cloud Computing Services”.
In: The Journal of Supercomputing 54.2 (2010), pp. 252–269.

[86] Xen Hypervisor. url: http://www.xen.org/ (visited on 03/17/2015).

[87] X. Xu, H. Yu, and X. Cong. “A QoS-Constrained Resource Alloca-
tion Game in Federated Cloud”. In: IMIS. 2013.

[88] X. Yang and J. Sun. “An Analytical Performance Model of MapRe-
duce”. In: CCIS. IEEE. 2011.

[89] B. Yolken and N. Bambos. “Game Based Capacity Allocation for
Utility Computing Environments”. In: ValueTools. 2008.

[90] M. Zafer, Y. Song, and K.-W. Lee. “Optimal Bids for Spot VMs in a
Cloud for Deadline Constrained Jobs”. In: CLOUD. 2012.

[91] J. Zhang, F. Dong, D. Shen, and J. Luo. “Game Theory based Dy-
namic Resource Allocation for Hybrid Environment with Cloud
and Big Data Applications”. In: International Conference on Sys-
tems, Man, and Cybernetics. (San Diego, CA, USA). IEEE. Oct. 5–8,
2014, pp. 1128–1133.

[92] Q. Zhang, Q. Zhu, M. Zhani, and R. Boutaba. “Dynamic Service
Placement in Geographically Distributed Clouds”. In: ICDCS. 2012.

[93] Q. Zhang, L. Cheng, and R. Boutaba. “Cloud Computing: State-of-
the-Art and Research Challenges”. In: J. Internet Services and Ap-
plications 1.1 (2010), pp. 7–18. doi: 10.1007/s13174-010-0007-6.

[94] Z. Zhang, L. Cherkasova, and B. T. Loo. “Parameterizable Bench-
marking Framework for Designing a MapReduce Performance Model”.
In: Concurrency Computat.: Pract. Exper. (2014). doi: 10.1002/cpe.
3229.

109

http://www.vmware.com/
http://www.xen.org/
http://dx.doi.org/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1002/cpe.3229
http://dx.doi.org/10.1002/cpe.3229

	Contents
	List of Figures
	List of Tables
	Introduction
	State of the Art
	Cloud Computing
	Basic Concepts
	Main Characteristics
	Architecture
	Service Models
	Deployment Models

	MapReduce and Hadoop
	MapReduce Applications
	HDFS
	Hadoop YARN
	From FIFO to Capacity and Fair Schedulers
	MapReduce Job Performance Models

	Game Theory Applications
	Game Theory for Cloud Computing
	Game Theory for MapReduce

	A Distributed Approach for the Joint Admission Control and Capacity Allocation of Hadoop Clusters
	Problem Statement and Design Assumptions
	Mathematical Programming Formulation
	Analysis
	Closed Form

	Game Theoretic Formulation
	Application Masters
	Resource Manager
	Analysis
	Iterative Approach
	Auxiliary Problem
	Best Reply Algorithm

	Integer Solution Heuristic

	Experimental Results
	Tools
	AMPL
	KNITRO
	YARN SLS

	Design of Experiments
	Preliminary Analysis
	Increasing Concurrency Level
	Decreasing Capacity
	Decreasing Deadlines
	Further Considerations

	Scalability Analysis
	Stopping Criterion Tolerance Analysis
	Validation with YARN SLS

	Conclusions and Future Work
	Acronyms
	Bibliography

