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Abstract

Nowadays many companies have at their disposal large amounts of raw,
unstructured data. With the term Big Data we refer to the analysis of
huge datasets, allowing the extraction of information of utmost impor-
tance for business purposes. Among the enabling technologies, a central
place is held by the MapReduce framework, in particular its open source
implementation, Apache Hadoop. For cost effectiveness considerations, a
common approach entails sharing server clusters among multiple user
classes. Such a common infrastructure should provide every user with a
fair share of computational resources, ensuring that Service Level Agree-
ments (SLAs) are met and avoiding wastes.

In this work we consider mathematical programming problems that
model the optimal allocation of computational resources in a cluster, in
order to develop new capacity allocation techniques, allowing for bet-
ter performance in shared datacenters. Our goal is the reduction of
power consumption, while respecting the deadlines stated in the SLAs
and avoiding penalties associated with job rejections. At the core of this
approach there is the development of a distributed algorithm, based on
Game Theory models and techniques, and enabling run-time capacity
allocation, hence the need to split the original problem of resource allo-
cation in MapReduce environments into two classes of problems, one for
the central Resource Manager and the other for each Application Master.
Further improvements could be gained taking into account also the issue
of data locality, which can greatly impact performance in the execution
of MapReduce jobs.
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Sommario

Oggi molte aziende hanno a disposizione grandi quantità di dati molto
spesso non strutturati. Con il termine Big Data si fa riferimento all’ana-
lisi di grandi moli di dati, permettendo l’estrazione di informazioni di
massima importanza per gli obiettivi aziendali. Tra le tecnologie abili-
tanti, il framework MapReduce occupa un ruolo centrale, in particolare
con la sua implementazione open source, Apache Hadoop. Per ragioni eco-
nomiche, una prassi comune prevede la condivisione di cluster di server
tra più classi di utenti. Tale infrastruttura comune dovrebbe fornire ad
ogni utente una giusta quota di risorse di calcolo, garantendo che i con-
tratti di Service Level Agreements (SLAs) siano soddisfatti ed evitando
sprechi, come l’utilizzo inefficiente delle risorse.

In questo lavoro di tesi si propongono problemi di programmazione
matematica per modellare l’allocazione ottimale delle risorse computa-
zionali in un cluster, al fine di sviluppare nuove tecniche di allocazione
delle risorse, consentendo una migliore performance in datacenter con-
divisi. L’obiettivo è la riduzione del consumo di energia, rispettando i
termini indicati negli SLAs ed evitando penali associate ad obiettivi di
prestazioni non raggiunti. Al centro di questo approccio si pone lo svi-
luppo di un algoritmo distribuito, basato su modelli e tecniche di Teoria
dei Giochi, che consenta l’allocazione della capacità di calcolo a run-time.
Da qui sorge la necessità di suddividere il problema originale di alloca-
zione delle risorse in ambiente MapReduce in due classi di problemi, uno
per il Resource Manager centrale e l’altra per ogni Application Master.
Ulteriori lavori futuri faranno rifermiento ad estensioni possibili tenen-
do conto anche della data locality, che può influire notevolmente sulle
prestazioni nell’esecuzione dei job MapReduce.
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CHAPTER 1
Introduction

A large number of enterprises currently commits to the extraction of in-
formation from huge datasets as part of their core business activities.
Applications range from fraud detection to one-to-one marketing, en-
compassing business analytics and support to decision making in both
private and public sectors. In order to cope with the unprecedented
amount of data that many companies need to process in a timely way,
new technologies are increasingly adopted by the industry, following the
Big Data paradigm. Among such technologies, Apache Hadoop [11] is
already widespread and statistics suggest further increase in its future
adoption. IDC estimates that, by 2020, nearly 40% of Big Data analyses
will be supported by the public Cloud [29], while Hadoop is expected to
touch half of the data worldwide by 2015 [43].

Apache Hadoop is an open source project, backed by the Apache
Foundation, developing a software suite that enables the elaboration of
vast amounts of data on clusters of commodity hardware. To accomplish
this goal, Hadoop features a distributed file system, a resource negotia-
tor, and interfaces to the MapReduce framework. The latter allows for
highly scalable parallel computation, automatically ensuring paralleliza-
tion and distribution, fault-tolerance, reliability, and monitoring. The
framework can offer all these interesting capabilities as it requires de-
velopers to write applications following the MapReduce programming
model, which consists of a fixed workflow, with a map function read-
ing unstructured input data and providing intermediate results to the
reduce function, which aggregates them and outputs processed data.

Despite the convenience of this approach and the widespread Hadoop
adoption within the Information Technology (IT) industry, still there are
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1. Introduction

not tools that support developers and operators in common activities re-
lated to the capacity planning of MapReduce applications. This thesis
investigates the theoretical fundamentals needed to enable design space
exploration in the early phases of application development, as well as the
optimal management of cluster resources in private Clouds at run-time.
To do so, we adopt Game Theory techniques, which found successful ap-
plication in facing issues related to the Cloud computing paradigm, and
use them to provide a scalable solution to the joint admission control and
capacity allocation of multi-class Hadoop clusters.

This thesis is organized as follows. Chapter 2 discusses the state of
the art, giving an overview of the technologies under study, in particu-
lar Cloud computing and Hadoop MapReduce, and exploring the usage
of game-theoretic techniques and methods when dealing with related is-
sues, as described in technical literature. Next, Chapter 3 shows how we
developed models to solve the joint capacity allocation and admission
control problem, interleaving the rigor of mathematical proofs with the
intuition of mechanisms underlying the application under study. Then
we analyze and validate our results in Chapter 4, where we carry out
a thorough exploration of the characteristics of the proposed models.
The solution methods are also validated comparing the predicted per-
formance with simulations run exploiting the official simulator offered
within the Hadoop suite. In the end, Chapter 5 wraps up this work and
draws conclusions on the outcomes. Furthermore, it points out relevant
issues that remain open and will be the focus of future work.
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CHAPTER 5
Conclusions and Future Work

Throughout this thesis we investigated MapReduce applications run-
ning on Hadoop clusters. After exploring the technical aspects related
to Cloud computing and Apache Hadoop, as well as the application of
Game Theory techniques to similar problems, we focused on the devel-
opment of models that could be exploited for solving the joint admission
control and capacity allocation problem at run-time and in a scalable
way. Then, these solution methods were validated through empirical
analyses and their results compared with simulations run on the official
simulator provided by Hadoop.

We have shown evidence to support the use of Algorithm 3.3.1 and
the formulæ of Proposition 3.3.3 as a scalable and accurate distributed
solution method for the joint admission control and capacity allocation
problem. Furthermore, we compared the results of two different formu-
lations of problem (3.14), using two possible virtual gain terms: r̃i = ri
and r̃i = ri − r lowi . The former considers the contribute of the whole set
of VMs to the virtual gain, whilst the latter does not take into account
the virtual payments associated to the portion of resources guarantee-
ing minimal operation. In lay terms, the former is closer to the intuitive
“revenues minus expenses” expression, whilst the latter comes from the
observation that r lowi VMs must be assigned to AM i independently of
the strategy adopted by the RM, hence their contribution should not in-
fluence the outcomes of the optimization process. Multiple times the for-
mulation adopting r̃i = ri−r lowi proved better, with respect to both robust-
ness and accuracy. Indeed, in Section 4.3 the alternative missed the opti-
mal solution in several experiments. Moreover, in Sections 4.4 and 4.5 we
showed a loss of efficiency when executing the formulation with r̃i = ri .
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5. Conclusions and Future Work

All in all, we can conclude that Algorithm 3.3.1 with r̃i = ri − r lowi is the
best approach to the solution of the problem of interest, both with re-
spect to times of execution and efficiency, and considering the accuracy
with which the optimal solution is caught. Furthermore, we showed that
this solution method requires execution times below the second, with
limited network traffic, then Algorithm 3.3.1 can support, in practice,
both design phases and the run-time management of clusters.

Building upon the outcomes of this work, it is possible to investi-
gate further open issues and relevant research questions. An aspect that
might strongly affect performance of MapReduce jobs in Hadoop clusters
is data locality. When map tasks are started, the framework takes care of
automatically providing slots with the slice of data they have to process.
Now, if a slot can be scheduled on the same node where HDFS stored
one of the blocks it should process, then computation will start right
away. If this is not the case, instead, the network time required to trans-
fer data between nodes will add to the job completion time. Similarly,
reduce slots should be scheduled in order to minimize the data transfer
needed to move intermediate values associated to the same key to the
correct node. This behavior can be modeled adding specific parameters
and constraints, thus allowing for results more adherent to actual cluster
performance, since I/O is one of the factors that greatly affect it.

A project that is attracting increasing attention in the industry is
Apache Tez [13]. It can be seen as the natural evolution of Hadoop,
where workflows are not fixed anymore. When several data sources need
to be accessed and combined, the MapReduce paradigm forces to use
clumsy sequences of jobs, with the need to perform I/O on HDFS and
explicitly enforce synchronization barriers after each step. On the other
hand, Apache Tez abstracts the dependency relationships among input,
output, and intermediate data with Directed Acyclic Graphs (DAGs). In
this way, the framework itself can manage computation, launching tasks
as needed and automatically ensuring that all the required intermediate
data for each step is available when it starts. Moreover, this approach al-
lows to avoid unneeded I/O between a step and the following. Another
interesting development of this work is the extension of the model to
consider the mechanisms governing Apache Tez, hence adapt our joint
admission control and capacity allocation problem for the execution of
complex DAGs.

In the end, we should be aware that the approximate formulæ we use
to estimate performance might incur in large errors due to the inherent
difficulty and unpredictability of application performance. A system for
reliable performance prediction can greatly benefit from the coupling
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with a local search method based on Petri Nets simulations. This tech-
nique allows to obtain very accurate predictions by simulating the whole
Hadoop system, clearly at the price of longer execution times. In this
vision, our models would provide a relevant initial guess for an iterative
procedure relying on this more precise technique, in order to find out
the optimal configuration or, conversely, certify that an application de-
sign will respect the constraints imposed on its execution due to business
considerations.
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